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marine plankton and the oceanic
components of biogeochemical cycles
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Historic Carbon Emissions and their Partitioning

Annual Carbon Emissions (+ve) and their Partitioning (-ve) b Cumulative Carbon Emissions (+ve) and their Partitioning (-ve) since 1850
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* The global ocean is one of the main carbon sink, intaking around % of

historic anthropogenic carbon emissions
from “Global Carbon Budget 2022” - Friedlingstein et al. (2022)
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Global carbon budget averaged on the decade 2012-2021
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» The global ocean is also the main stock of carbon on Earth, making it a

central element in climate modelling
from “Global Carbon Budget 2022” - Friedlingstein et al. (2022)
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The Biological Carbon Pump

* Marine snow is the main
vector of carbon exports
to deep water of the
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The Underwater Vision Profiller (UVP)

» A pressure-resistant underwater camera that can take images of plankton
and particles at depths of up to 6,000 m.

* It cantake up to 20 pictures per second, and each picture samples a volume
of around 1L.

=In a 1000 m dive, the UVP can sample up to 20 m? of seawater >> 400
liters of waters sampled by Niskin bottle

“continuous” sampling
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The Underwater Vision Profiller (UVP)
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The Underwater Vision Profiller (UVP)
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The UVP database (R. Kiko et al., 2022)

Size classes: ><21/3 ><21/3
e 28classes

ESD[mm]
0.04 - 0.05 0.41-0.51 0.51-0.65  0.65-0.81 20.6 - 26
e Pictures are concatenated to create 5 m depth bins
e 8803 samples, collected during 139 cruises
UVP5 sampling from 2008 to 2020
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Abundance [#/L]

Global averages
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Evolution of particles abundance with depth and particle size
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Evolution of particles abundance with depth and particle size

Size classes (ESD)
—— 0.256-0.323 mm
—— 0.323-0.406 mm
—— 0.406-0.512 mm
~—— 0.512-0.645 mm

0.645-0.813 mm

0.813-1.02 mm

1.02-1.29 mm
~—— 1.29-1.63 mm
—— 1.63-2.05 mm
—— 2.05-2.58 mm

10! 102 103

Depth [m]

The slope of the particle distribution is quite independent of the depth (left

panel)

The particle abundance decreases with depth under the euphotic zone, where
there is no primary production. The final increase at 6000 m is due to sea floor

proximity (right panel)
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Global averages

Evolution of particles abundance with depth and particle size Evolution of particles abundance with depth and particle size

Depth [m] ‘ 1

Global average particles size spectre
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 The slgope of the particle distribution is quite independent of the depth (left
pane

* The particle abundance decreases with depth under the euphotic zone, where

there is no primary production. The final increase at 6000 m is due to sea floor
proximity (right panel)
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The scope of our work (for now)

> Our first models focus
on the UVP5 surface
data: average of
particles abundance
between 15 and 150 m
deep

> We only take into
account size classes
between 0.256 mm and
2.58 mm (10 classes)

Evolution of particles abundance with depth and particle size
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\;.APRO Campaign

40 days oceanographic campaign in North Atlantic June 2023). 2
ships and more than 60 scientists on board

* Morethan 10 UVPs were onboard among many other
measurement tools.

« The aim of the campaign was to sample ocean eddies and fronts
at fine scale to better understand the role of those mesoscale
structures in the carbon cycle

15
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Satellite data

ESA-DEVELOPED EARTH OBSERVATION MISSIONS
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ESA and other space agencies are putting a lot of effort and resources in
remote sensing programs to monitor earth surface
This allows researchers to access data at a very high space and time resolution
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Context: extrapolation of marine snow dataset with satellite
data

Satellite data In-situ marine snow data

UVP5 sampling from 2008 to 2020

Himgi2012-10;24 2 D, A . 2020
0s . LR 2018
£ 0e 5% 1 : &.‘ Fu )
1 ’ SN e s 25 z . 3 =
-150 -100 —%:ngme [digrees_eastslb 100 150 o0 o o TP Longiuce ? mo 150
Advantages: :: Advantages:
> High time and space resolution > High level of characterization of
> (almost) dense data marine snow particles
> Deep profiles (up to 6000 m)
Limitations: Limitations:
> Data from surface water only > Sparse data in time and space
> Low level of characterization of > Geographic and seasonal biases

marine snow
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World Ocean Atlas (Garcia et al., 2019)

S
o‘“«

« WOA are monthly climatologies of biogeochemistry (BGC)M quantities

» Chosen data products for models:

Quantity Grid size(s) Time Span
Temperature 1° and 0.25° 1955-2017
Salinity 1° and 0.25° 1955-2017
Density 1° and 0.25° 1955-2017
Conductivity 1° and 0.25° 1981-2010
Nitrate 1° all available data
Phosphate 1° all available data
Silicate 1° all available data
Oxygen (concentration, 1° all available data
AOU and saturation)
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Copernicus - Level 4 data \ opernicus

Data source Grid size(s) Data Product Quantities Frequency
Chlorophyl Daily and Monthly
concentration
Plankton
Biomass of Phyto Monthly
groups
at 412, 443, 490, 555 Monthly
Global Ocean Colour o LG REIEEEmEE and 670 nm
KD490, ZSD Daily and Monthly
Transparence
SPM Monthly
Optics BBP, CDM Monthly
Global Ocean OSTIA SST - Daily and Monthly
SST and Sea Ice 0.05°
SSI - Daily and Monthly
Global Ocean SSH SSH SLA, ADT Daily
And Derived
Variables 0.25° North and West Daily
Currents Current velocities and
anomalies
v 4
V207
clea—
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PISCES-v2 (Aumont et al., 2015) coupled with an ocean circulation

» BGC fields from a global ocean model (PISCES-v2) coupled with two physics
forcings (GLORYS2V4-FREE and ERA-Interim atmosphere)
e Grid size: 0.25°

PAR Frequency | Quantities
Ammonium
| Daily and Chlorophyll
Nt te C.Fc,Ch] (o]
e ‘ Nanophyto. ™ microzoo. Monthly .
1 ; Nitrate
Iron | m ‘ * —
C, Fe, Si, Chl c
Diatoms T Mmesozoo. Phosphate
Silicate
— - Silicate
Dissolved oxygen
C, Fe, Si . .
Primary production
|
_______________________________________________________ i Monthly Iron
Phytoplankton in carbon

PISCES architecture scheme
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* The density of UVP
sampling is very irregular
in time and space

UVP5 sampling from 2008 to 2020

Train/Test splitting strategies specifications
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Train/Test splitting strategies specifications
A

Treal ({E )
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Train/Test splitting strategies specifications

T & train set

test set

Treal (ZU ) P

\/"
/
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Train/Test splitting strategies specifications

T

& train set

test set

Tmodel (.QZ’ )

26

Measured performance greatly overestimatethe | .
quality of the model on the overall field of study X
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Train/Test splitting strategies specifications

* The density of UVP * Atoo conservative
sampling is very irregular approach would make us
in time and space lose a lot of information

(seasonality, specificity of
each biogeochemical
region, local planktonic
community, ...)

= We need a splitting
strategy resilient to
overfitting due to time and
space proximity of samples
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Train/Test splitting strategies specifications

A

Treal (ZU )

& train set

test set
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Train/Test splitting strategies specifications

T Trnoder () ¢ train set

test set

Treal (SU )

Our model is much worse, with little
\/ margin for improvement
(underfitting)
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Train/Test splitting strategies specifications

* The density of UVP * Atoo conservative
sampling is very irregular approach would make us
in time and space lose a lot of information

(seasonality, specificity of
each biogeochemical
region, local planktonic
community, ...)

= We need a splitting

strategy resilient to

overfitting due to time and

space proximity of samples
=> We need a splitting
strategy that keeps a good
temporal and regional
representation in both
datasets

" lreeia—~
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Train/Test splitting strategies specifications

T & train set

test set

Treal (ZU )

b
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Train/Test splitting strategies specifications

A

32

¢ train set
test set <
Treal(x) P
Tmodel(x)
Measured model performance is more :
representative of its overall quality €T
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Chosen splitting strategy

 We group samples together with the following rule:

V(xy,22) € X, d(51,52) < 0 Nds(51,82) < ds = g(s1) = g(s2)

Space variogram of euclidian distance between samples

354 data 1 data
—— moving average —— moving average
--- modelled ---- modelled
30 4 chosen threshold ] chosen threshold
25
20 A
154 i
104 /
o -
10° 10! 102 103 104 0 50 100 150 200 250 300

distance [km] distance [km]

> Chosen threshold is at >60% of global scale variance,
and >95% of mesoscale variance (< 300 km)
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Chosen splitting strategy

 We group samples together with the following rule:

V(xy,22) € X, d(51,52) < 0 Nds(51,82) < ds = g(s1) = g(s2)

Time variogram of euclidian distance between samples

40

data data
—— moving average —— moving average
--- modelled ---- modelled
35 1 chosen threshold 8 chosen threshold
30
25
oot G | o, s W /"_}—.__--r-‘—f

o /
Bl &
10 T T T T T T T T

10° 10! 102 103 0 10 20 30 40 50

time distance [days] time distance [days]

> Chosen threshold is at >60% of global scale variance,
and >95% of mesoscale variance (< 300 km)
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Chosen splitting strategy
 We group samples together with the following rule:

V(xy,22) € X, d(51,52) < 0 Nds(51,82) < ds = g(s1) = g(s2)

e We chose the following thresholds:
0, = 30 days, 0, = 80 km

10,000yt —
1000yr |-
100yr |
10yr
1yr -
1mon j-
3
D 1wk -
g
=
1d -
1hr |- and . .
. T Time and space scales of ocean dvnamics
tmn |/ s —— from Ocean Reference Stations - Cronin et al. (2012)
— gvavxut;'a;:ws
tsec |- oomery
molecular \ © D. Chelton P4
soc LPOCOSSSS | P
g = 1em 10|cm 1lm 1<I>m 1olom nl(m !Olkm 10(l!km 10010km 10‘lkm 1oikm &Zua/—
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“Full spectrum” model

(xi,k)kefeatures

XGBoost Yi1 XGBoost Yi2 XGBoost Yis -
Regressor 1 Regressor 2 Regressor 3
e We build and fit one model for each o1 Te
particle size class (10 in total), ol :
beginning with the smallest vis

particles

Abundance [#/L]

« Each model take as input the
selection of surface features and
the predictions of previous (and
smaller) size classes

,_.
2
L

10°
ESD [mm]
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Chosen space of XGBoost hyperparameters

Parameter Trade of Chosen range

Trees max depths Bias / Variance [2, 7] (g-uniform)
learning rate Speed / Bias [7e-3, 4e-1] (log-uniform)
subsample Bias / Variance & Speed [0.5, 1] (uniform)
subfeatures Bias / Variance & Speed [0.6, 1] (uniform)

lambda (L2-reg) Bias / Variance [1, 1.5e2] (log-uniform)
alpha (L1-reg) Bias / Variance [5e-5, 1] (log-uniform)
gamma (min loss red.) Bias / Variance [0, 10] (uniform)

min child weight Bias / Variance [1, 20] (g-uniform)

* To find the best model architecture, I'm using Python hyperopt
package, equipped with a bayesian algorithm

v d
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T14S100 models results examples

Part conc frac [#/1] (ESD: 0.256-0.323 mm) Part conc frac [#/1] (ESD: 0.323-0.406 mm) Part conc frac [#/1] (ESD: 0.406-0.512 mm) Part conc frac [#/1] (ESD: 0.512-0.645 mm) Part conc frac [#/1] (ESD: 0.645-0.813 mm)

/
/
R2 = 0.46366 R2 = 0.53456 /' 2 R2 = 0.4543 R2 = 0.44277 R2 = 0.41568
/
p=1le132 p=18e158 o e p=4.8e-125 L
2 °
0
oo 1
2. o
1 -1
® o0 n
(L ~
= -1
e ‘\.. -2
b 1 A
w o . -2
Lo -3
-1
-2
-1 0 2 3 -1 o 1 2 3 -2 -1 o 1 2 -2 -1 o 1 2 -3 -2 -1 o - ¥
data data data data data
Part conc frac [#/1] (ESD: 0.813-1.02 mm) Part conc frac [#/1] (ESD: 1.02-1.29 mm) Part conc frac [#/1] (ESD: 1.29-1.63 mm) Part conc frac [#/1] (ESD: 1.63-2.05 mm) Part conc frac [#/1] (ESD: 2.05-2.58 mm)
0 i
/
o § = > ¥ 403
R2 = 0.39049 o o® R2 = 0.4061 R2 = 0.41236 R2 = 0.41995 o o %9 | 21 R2=037691

p=2.2e104

p = 4.9e-107 p = 6.7e-109 p = 2.6e-109
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We observe a slight decrease of performance for bigger particles, probably
due to the fact that big particles are more dynamics dependent, and less
directly correlated to phytoplankton abundance (i.e Chlorophyll
concentration)
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Performance differences with overfitting random split strategy

Model performance variation with split
(R squared)

0.8
* Overall displayed
performance of “vanilla”  0.7-
random split strategy is ==
far greater than our 0.6
conservative approach os |
0.4 - T
0.3 - J_
0.2 -
0.1
0.0 T T
group_split_ T30S80 random_split
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Discussion - density of UVP sampling

Space coverage of UVP samples in global WOA data (UMAP)

e Southern Ocean

« South Atlantic Ocean
@ South Pacific Ocean

e North Pacific Ocean

o Indian Ocean
- ™ e e Mediterranean Region
r 2 e Baltic Sea
e North Atlantic Ocean
e Arctic Ocean
+ Samples

» South China and Easter Archipelagic Seas

41
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In this projection of UVP
samples in a nonlinear
reduced space of global
WOA data, we observe
that UVP samples have an
overall good coverage,
but with wide variations
in density

This projection, done with
seasonal climatologies,
doesn’t take into account
major multiyear
phenomenon that can
have a global impact on
BGC dynamics, like El Nino
for example
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Monthly climatology (2009-2019)

January February March

T T T T T T T T T
100 150 -150 -100 -50 0 50 100 150
lon lon lon
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Conclusion

> We propose an innovative approach in ocean
particulate organic matter modelling to

produce a fine scale global product of particles
stocks

> Because of the structure of available particles
data, we had to propose an alternative
strategy for test and train set split

> Final results still have room for improvement



Perspectives, work to do

« Thisis still work in progress, a few details need to be refined:

« Evenif our train/test splitting strategy is more conservative
than actual litterature, we want to improve it with a more
formal approach to avoid any overfitting

« We have yet to use our models to create extrapolated fields

« Thisis still a zero dimensional model, which probably explain a
large part of our bias: the particles are heavily dependent of the
history of the water they evolve in.

We want to take such dynamics into account. It could be done by
creating a hybrid lagrangian NPZD model.

* The particle distribution in deep water is yet to be modeled. Deep
Learning provide interesting tools like LSTM neural networks to
simulate time or space series.
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Thank you for your attention !
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Impact of modelling on the power law hypothesis

hypothesis :
R?is lower than R median in data (0.98)
Power Law hypothesis: (1 - R2) distribution
— m data data
120 { [ predictions
el | F "L— " + -
100 — :!E*ﬁﬁ _E
- S+ 197 87
I o
o - 9
= - Q.
5 I — - 446 555
O 60 %

. | My

20 . j | Accuracy = 58%
e _I_L i Precision = 69%
;ﬁ:l__:—F [T
< 1073 102 10t Recall = 31%
1-R2=0.02 -
Creeca—

46



