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OCÉANIA

BIOCORE

Biological control of artificial ecosystems: 
modelling, control and optimization. 
Focus on phytoplankton.

Uptake rate:

Growth rate:



OCÉANIA

Biocore: joined team with the 
Oceanographic Laboratory from Villefranche (LOV)
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Link to in situ campaigns

4

In situ data

Lionel GUIDI
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Biocore contribution

• Understanding the rules driving response to temperature in 
phytoplankton (O. Bernard)

• Neural ODE for representing phytoplankton growth driven my light (I. 
Fierro)

• Towards hybrid modelling of artificial microbial ecosystems (F. 
Casagli)

• Spatio-temporal high-resolution models of particulate organic matter 
abundance in the ocean (R. Ranini) 
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Introduction: temperature influence on growth

MICROBIAL RESPONSE TO 
TEMPERATURE
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Temperature impact on growth at various light intensities

Temperature response for most of phytoplankton species

Phaeodactylum tricornutum

Nannochloropsis oceanica

Tmin
Top
t Tmax
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Modelling growth response to temperature

𝜇𝑜𝑝𝑡
Cardinal Parameters

Bernard & Rémond (2012)

Tmin Topt Tmax

BR model

Tmin Topt Tmax

𝜇𝑜𝑝𝑡

Thermal 
niche

Temperature response
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Idem for most of the microorganisms

E. Coli (Lobry& Chessel, 2003)Geotrichum candidum.(Hudecova et al., 2018)
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Menu

WHICH BIOLOGICAL 
MECHANISMS INVOLVED?
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What happens at high temperature?

Why is the 
temperature 

response 
droping?

Nannochloropsis oceanica
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Kinetics examples at 45°c

0min             5min           10min            20min           30min           40min           50min            60min

0min            5min            10min           20min           30min            40min           50min           60min

FL3
14151617

FL
1

8

10

12

14

16

FL3
14151617

8

10

12

14

16

FL3
14151617

8

10

12

14

16

FL3
14151617

8

10

12

14

16

FL3
14151617

8

10

12

14

16

FL3
14151617

8

10

12

14

16

FL3
14151617

8

10

12

14

16

FL3
14151617

8

10

12

14

16

FL3
14151617

FL
1

8

10

12

14

FL3
14151617

8

10

12

14

FL3
14151617

8

10

12

14

FL3
14151617

8

10

12

14

FL3
14151617

8

10

12

14

FL3
14151617

8

10

12

14

FL3
14151617

8

10

12

14

FL3
14151617

8

10

12

14

FDA

Erythrosin

Chlorophyll Fluorescence

Chlorophyll Fluorescence

Fl
uo

re
sc

en
ce

 
FD

A
Fl

uo
re

sc
en

ce
 

Er
yt

hr
os

in

Dunaliella salina



OCÉANIA

Menu

ARE THERE SOME 
GENERAL PATTERNS 
HIDDEN BEHIND 
TEMPERATURE 
RESPONSE?

Can we predict the evolution of the Temperature Response
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𝜇𝑜𝑝𝑡

Cardinal Parameters

Bernard & Rémond (2012)

Tmin Topt Tmax

Tmin Topt Tmax

𝜇𝑜𝑝𝑡

Thermal 
niche

Link between temperature and environment

Link between isolation temperature and the 
cardinal parameters?

Analysis of 2240 experimental growth rates (merging
3 data bases)

(Thomas, 2016; Corkrey, 2019; Homemade 2020)
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Relationship between cardinal  parameters 

Tmin Topt Tmax

𝜇𝑜𝑝𝑡

Thermal niche
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Link between Tmin, Tmax and Topt

Haptophyta

Ochrophyta

Dinophyta

Chlorphyta
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Cardinal temperature links among microorganisms

Eukayota

Bacteria

Archae
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Which of these growth curves is realistic?
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There is a link with the inflexion point!

Microalgae

CyanobacteriaBacteria

Archaea
Yeasts

T i
nf
le
x

T i
nf
le
x

Tmax

Tmax

Tmax

Tmax

All together

R2 = 0.958
Tinfl = Tmax – 9.21
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Menu

LINK BETWEEN LOCAL 
ENVIRONMENT AND 
TEMPERATURE RESPONSE
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Micromonas temperature response in present and future 
oceans

Specific focus on Micromonas

Worden et al., Green Evolution and Dynamic Adaptations Revealed by Genomes of the Marine Picoeukaryotes Micromonas, Science 2009

Micromonas: pico eucaryote 
(Mamiellaceae) 
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Link environment with thermal response
Thermal response

11 Micromonas strains

Strains Tmin Topt Tmax muopt
RCC299 7.94 29.29 37.05 1.28
RCC829 -0.08 26.33 32.51 1.09

°C d-1

BR model Thermal response 
data base

°C d-1

Strains Tmin Topt Tmax muopt
RCC299 7.94 29.29 37.05 1.28
RCC829 -0.08 26.33 32.51 1.09
RCC746 4.60 19.18 23.57 0.92
RCC451 9.59 25.13 32.56 0.87
RCC497 -1.59 23.51 30.00 0.91

BR model Thermal response 
data base

°C d-1

Strains Tmin Topt Tmax muopt
RCC299 7.94 29.29 37.05 1.28
RCC829 -0.08 26.33 32.51 1.09
RCC746 4.60 19.18 23.57 0.92
RCC451 9.59 25.13 32.56 0.87
RCC497 -1.59 23.51 30.00 0.91
RCC1697 -16.04 24.04 27.5 0.85
RCC114 1.01 24.49 30.68 0.82
RCC834 6.34 23.71 30.71 0.81
RCC1862 -11.64 23.01 28.92 0.99

BR model Thermal response 
data base

°C d-1

BR model

Strains Tmin Topt Tmax muopt
RCC299 7.94 29.29 37.05 1.28
RCC829 -0.08 26.33 32.51 1.09
RCC746 4.60 19.18 23.57 0.92
RCC451 9.59 25.13 32.56 0.87
RCC497 -1.59 23.51 30.00 0.91
RCC1697 -16.04 24.04 27.5 0.85
RCC114 1.01 24.49 30.68 0.82
RCC834 6.34 23.71 30.71 0.81
RCC1862 -11.64 23.01 28.92 0.99
RCC2257 -14.12 7.03 16.91 0.45
RCC2306 -9.74 7.60 15.35 0.44

Thermal response 
data base

Environment vs temperature response
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Link environment with thermal response
Linear model

Environment maximal 

temperature (°C)
Latitude

Tm
in

(°
C)

Strong link between 
environmental temperature and 
thermal response

Environment vs temperature response

Demory et al. 2019, 2021

Related to SST 
max 

temperature!

Topt Tmax
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Menu

CAN WE PREDICT 
PHYTOPLANKTON 
BIODIVERSITY FROM SST?
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Micromonas: a phytoplankton sentinel

SST data from: Copernicus Marine Environment Monitoring Service

DiversityAverage from 1993 to 2012

Micromonas Diversity

Predicting micromonas diversity response to temperature = representative of phytoplankton

Demory et al. 2019

Phytoplankton Diversity 
from Thomas et al. 2012
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Menu

CAN WE PREDICT THE 
EVOLUTION OF THE 
TEMPERATURE 
RESPONSE?
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The selectiostat principle

Designed by E. Pruvost

Computer controlled devices to trigger 
adaptation on the long term in a dynamical
realistic envirnment
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Temperature adaptation experiments

After six 
months

• Increase of max growth rate

• Increase of max temperature

WT

Bonnefond et al. 2017, Plos One
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Evolution of ocean temperature
SST anomalies (2001 — 2100)

Climate projections from: NOAA GFDL329 CM2.1 driven with the SRES A2 scenario (Griffies et al. 2005; Delworth et al. 2006)

Global warming

Phytoplankton adaptation in a future warmer ocean?
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How fast can phytoplankton adapt?
Importance of the adaptation time scale

Phytoplankton from Thomas et al. 2012

Phytoplankton adaptation in a future warmer ocean?

Demory et al. 2019

? 
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Conclusion – challenges

• Temperature plays a key role (as light) on 
phytoplankton: but it has not been studied and 
understood with the same details!

• Much remains to be done to understand and represent
in models acclimation to temperature

• Understand and include adaptation to  temperature
change in the models

• Key question to predict the impact of  global changes!



OCÉANIA

Biocore contribution

• Understanding the rules driving response to temperature in 
phytoplankton (O. Bernard)

• Neural ODE for representing phytoplankton growth driven my light 
(I. Fierro)

• Towards hybrid modelling of artificial microbial ecosystems (F. 
Casagli)

• Spatio-temporal high-resolution models of particulate organic matter 
abundance in the ocean (R. Ranini) 
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NEURAL ODES FOR 
PHYTOPLANKTON MODELING

Combining first order principles 
and neural networks

J. Ignacio Fierro U. & Olivier Bernard
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Modeling phytoplankton  evolution in a light gradient

Growth rate is affected by: Temperature, pH, nutrients, light, etc.

PhotobioreactorsOcean

D
ep

th
(c

m
)

Light availability
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Neural Ordinary Differential Equations
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Diatoms growing in  photobioreactor

Phaeodactylum tricornutum cultivated 
under natural light in a 180L flat-panel 
airlift in a greenhouse (Leuna, Germany, 
July - September 2015). 

Online measurements recorded every 
10 minutes.

Fraunhofer Center for Chemical-
Biotechnological Processes.
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Diatoms growing in  photobioreactor
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Neural ODE
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Implementation of the model in PyTorch
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Numeric solver

We code our own Runge-Kutta method 
as recurrent neural network to allow 
backpropagation.

Solving in batch: several equations can 
be solved at the same time.

Light and temperature are interpolated at 
the same time the equations are solved.
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Results
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Some Issues
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Solution: informed differential equation



OCÉANIA

Solution: informed differential equation
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Biocore contribution

• Understanding the rules driving response to temperature in 
phytoplankton (O. Bernard)

• Neural ODE for representing phytoplankton growth driven my light (I. 
Fierro)

• Towards hybrid modelling of artificial microbial ecosystems (F. 
Casagli)

• Spatio-temporal high-resolution models of particulate organic matter 
abundance in the ocean (R. Ranini) 
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FROM MECHANISTIC TO HYBRID MODELLING OF 
ALGAE-BACTERIA SYSTEMS

46

Francesca Casagli, Morgan Scalabrino, Joel 
Ignacio Fierro Ulloa, Olivier Bernard
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STARTING POINT: THE ALBA MODEL

47

Narbonne Milan Rennes

Synthetic WW

443 days

CALIBRATION + VALIDATION

Piggery digestate

189 days

VALIDATION

Piggery digestate

14 days

VALIDATION



OCÉANIA
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Calibration - Validation Validation

MECHANISTIC MODEL VALIDATION
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HYBRIDIZATION APPROACH: 
FROM MECHANISTIC MODELS TO PINNS

50

Mass conservation

mass of the total element η in the system→

Application:

§ Pre-training neural network: determining a first set 
of parameters → static approach

§ Training techniques based on back propagation: 
closing the gap between model and real data →
dynamic approach

Strategy: 

§ Replace the part most affected by uncertainty by neural 
networks

§ General formulation applying specific constrains 

§ Example of application to a mass balance model: the 
ALBA model
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1ST PHASE: CONSTRAINED STATE BOUNDARY

51

Which structure for the kinetics would guaranty the trajectory to respect 

• physical positivity of the concentrations 

• causality (i.e. no substrate: no reaction)

Unknown part given by the NN

Constrain function (containing          )

Such that:

First level of hybridization
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2ND PHASE: KINETIC IDENTIFICATION

52

Computing the target functions from the trajectories of the mechanistic model:

Generated by the mechanistic model

Chosen constrain function

Second level of hybridization

Static problem:
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2ND PHASE: KINETIC IDENTIFICATION

53

Identifying a neural network structure for every biological kinetic
Hidden 
layers 

structure

Parameters
(weights for one kinetic)

Parameters
(weights for all the 

kinetic)

Input Target

7 - 7 - 7 252 4788 21 ρi,MM

Hidden layers 
structure

Mean error 
(10k iteration)

Performance
test

5 - 3 - 2 0.0115 3.5e-04
7 - 7 - 7 0.0029 3.5e-04

7 0.0272 4.5e-04

Application to the ALBA model

§ Training the neural network based on the simulated 
mechanistic  kinetics

§ Advantage: with the model we can generate a wide 
range of conditions and points!

ρALG,growth,NN

ρ AL
G,g
row

th,
MM



OCÉANIA

3RD PHASE : KINETIC BOUNDARIES

54

Creation of functions to bound the bio-kinetic rates (derived from the MM simulation): 

• Non negative bio-kinetic reats (min boundary)

• Not too high values → not realistic (max boundary)

• Can also be derived by expert knowledge on the kinetics

Saturation of the NN prediction: guarantees the predicted kinetics do 
not become weird far from the training data set.
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4TH PHASE : FINE TUNING 

55

Fine tuning of a subset of the NN parameters with the experimental data 
using dynamic backpropagation

The gradient is computed with a backpropagation approach, based on 

an estimate of the sensitivity functions

The algorithm starts from the parameter set        estimated in phase 2.
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4TH PHASE : FINE TUNING 

56

Fine tuning using on-line O2 and measurements of algal biomass and 
inorganic nitrogen

Application to the ALBA model

Training Training

Fit improvement in the training period
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5TH PHASE: VALIDATION AND TEST

57

Application to the ALBA model for predicting another case (Milan)

Test phase: different dataset not used for the training
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NH4+ is very
challenging to predict

Test phase: different dataset not used for the training

5TH PHASE: VALIDATION AND TEST

Application to the ALBA model for predicting another case (Milan)
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Biocore contribution

• Understanding the rules driving response to temperature in 
phytoplankton (O. Bernard)

• Neural ODE for representing phytoplankton growth driven my light (I. 
Fierro)

• Towards hybrid modelling of artificial microbial ecosystems (F. 
Casagli)

• Spatio-temporal high-resolution models of particulate organic 
matter abundance in the ocean (R. Ranini) 
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OPTIMISATION OF WATER LIVING MICROORGANISMS FOR 
GENERATING

RENEWABLE RESOURCES

11/03/2024-
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Olivier BERNARD

Green Owl


