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Complex dynamical systems: understanding nature

Source: https://soulofmathematics.com/index.ph

p/differential-equations/ Source: NASA.

Source: C. Fukushima and J. Westerweel, Technical University of

Source: https: Delft

//secretofflight.wordpress.com/turbulence/


https://soulofmathematics.com/index.php/differential-equations/
https://soulofmathematics.com/index.php/differential-equations/
https://secretofflight.wordpress.com/turbulence/
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The problem: PDEs are hard!

Finite-element methods

m Mesh based
m Curse of dimensionality

m Parameter change requires
reevaluation
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Neural networks (or ML) for learning PDEs

Training a neural network to the solution

m Differentiable everywhere

m Mesh-free approach

m Parameter agnostic

m Requires a lot of data and ignores domain expert knowledge.



Physics-Informed Neural Networks (PINNSs)

The physics-informed paradigm

Incorporate deviation from physics law
inthe loss function with a A parameter to weigh the influence of the physics.
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MOPINNS: Evolutionary multi-objective PINNs'

Problem in ‘regular’ PINNs

A € [0,1]is overloaded with different functions:
m Itis meant to express a preference between physics and data, but
m different physical scales between losses — differences in magnitudes,

m different numerical characteristics of losses, such as convergence
rates.

Our proposal: MOPINNs

m Introduce a multi-objective formulation ming(gata, {physics)

m Evolutionary AutoML to automatically find the best network
architecture

Tde Wolff, T, Carrillo, H., Marti, L, & Sanchez-Pi, N. (2022). Optimal architecture discovery for physics-informed neural networks. In A. C.
Bicharra Garcia, M. Ferro, & J. C. Rodriguez Ribén (Eds.), Advances in Artificial Intelligence — IBERAMIA 2022 (pp. 77-88). Cham: Springer
International Publishing



Multi-Objective Optimization

minimize F(x) = (fi(x), f>(x), ... fm(x)) , withx e DS R". M

Solutions x™ € arg minyep F(x) are in the Pareto-optimal set such that:

fi(x*) < fix), Vie{l,...,m};xeD. @)

fa(x)
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Evolutionary multi-objective optimization’

P, Pest
o: °
s o: 6) .
§) ® o Evolutionary
® .
%6 8 ° algorithms are
o ) o inspired by the notion
o . |92 © of survival of the
© @) Oo fittest from
00 8? ® . |© Darwinian Evolution
¢ ox ® ot and modern genetics.

m Advantages: inherent parallel search, and lower susceptibility to the
shape or continuity of the image of the efficient set
m Selected algorithms:

m Non-dominated sorting genetic algorithm (NSGA-II)
m Reference-point-based selection NSGA (NSGA-I11)
m Multi-objective evolutionary algorithm by decomposition (MOEA/D)

2C0ello Coello, C, Lamont, G, & van Veldhuizen, D. (2007). Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and
Evolutionary Computation. New York: Springer, second edition



The (current) MOPINNSs Proposal

Use an EMO algo. to search for individuals that minimize

L

Caxeal0) = = > |B(u) (x!" ) = B(ug) (', )| and

AHAE
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1
gphysics(g) = N_f;
where individuals express of the network parameters:
m network activation function,
m number of neurons for each layer, and
m ), the relative trade-off between data and physics losses.

For each individual, train a physics-informed neural network by
minimizing
6(97 )‘) = (1 - /\)gdata(e) + )\Ephysics(e) .
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Experiments

) Wave equation:
Burgers equation:

82
ou  Ou ou 20 _v. (HV7) ,
— tUn =v—, ot
ot 0X G 10((x—0.5)% +(y—0.75)%)
—10((x—=0.5)"+(y—0.
u(x, 0) = —sin(rx), n(x,y,0) = e g :
u(l,t) = u(-1,t)= 0. oy 0)=0.

at

m Multi-objective algorithm: MOEA/D with 10 generations and a
population size of 25.

m Activation functions: LeakyReLU, ReLU, Tanh, Sigmoid, Softplus,
Softsign, TanhShrink, CELU, GELU, ELU, SELU, and LogSigmoid.

m Architectures: three hidden layers of up to 100 neurons per layer, in
decreasing order.



Results - Burgers equation

50 x 50 x 40 neurons, A = 0.15, using the tanh activation function
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Results - Wave equation

60 x 50 x 50 neurons, A = 0.76, using the SELU activation function

Loss physics

Generation=1

Wave equation
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Results - Wave equation
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Solution

(0'0=1) Juswade|dsiq

(5°0=1) Juswade|dsig
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Multi-level PINNs: Model nutrients in a fluid (eventually NPZ models)

L1. Physics: Fluid “Modified MLP"*: avoid gradient
Two-dimensional decaying issues.
turbulence via incompressible Weighted residual loss:*
Navier-Stokes,
Nt
Ow +u-Vw = AAw 2,(0) = 1IN, 2 w;il,(t;, 6),
V-u=0 =
. w; = e—E Z;(=1 Z,«(i‘k,g)

u = (u, v): flow velocity field,
w =V x u: vorticity, A: eddy Gate continuous function in the
viscosity. residual loss?

L2. Biological: Nutrients
Nutrients over fluid as coupled

Ny
advection: £(6) = /N, Z Le(xi, 17, 0)g(t;),
I=

O%N+u-VYN=0 g(t;) = 0.5[1—tanh(a(t; = v))].

3Wang, S, Teng, Y, & Perdikaris, P. (2021). Understanding and mitigating gradient flow pathologies in physics-informed neural
networks. SIAM Journal on Scientific Computing, 43, A3055-A3081
L o o B o



Multi-PINNs results

PINN solutions, t = 0.02
Fluid dynamics w(t.x,y) Nutrients concentration N(t, x,y)
o
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Modelling stellar atmospheres

m Lightis created by the interaction
of light with the atoms.

m The chemical composition of stars
is encoded in their spectra.

Current: MARCS model®

m Table with 52.000 entries mapping
chemical composition to spectra.

Source: Wikipedia.

m Observe spectra, find most similar ~ Use PINNs to learn to map

on table -> use that composition. ~ from spectra to chemical
m Limited to certain types of stars. composition relying on the
model(s) of the

m More complex approached “3D” are

) ) atmosphere(s).
too computationally expensive.

GGustafsson, B, Edvardsson, B, Eriksson, K., Jorgensen, U. G, Nordlund, A, & Plez, B. (2008). A grid of MARCS model atmospheres for
late-type stars: |. methods and general properties. Astronomy and astrophysics, 486, 951-970



Thanks! jGracias! Merci'!

We have briefly presented some of the work we are doing in as part of
project OcéanlA:
m focus on understanding complex natural phenomena,
m create research tools not just better models, and
m problems from completely different contexts share challenges and
difficulties - opportunity for knowledge reuse.

m Consolidated code:
https://github.com/Inria-Chile/pypinns.


https://github.com/Inria-Chile/pypinns
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Thank you! Obrigado! Merci! jGracias! ... ...


https://inria.cl
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