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Complex dynamical systems: understanding nature

Source: https://soulofmathematics.com/index.ph
p/differential-equations/

Source: https:
//secretofflight.wordpress.com/turbulence/

Source: NASA.

Source: C. Fukushima and J. Westerweel, Technical University of
Del�
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The problem: PDEs are hard!

Finite-element methods
Mesh based
Curse of dimensionality
Parameter change requires
reevaluation



Neural networks (or ML) for learning PDEs

Training a neural network to the solution

Differentiable everywhere
Mesh-free approach
Parameter agnostic
Requires a lot of data and ignores domain expert knowledge.



Physics-Informed Neural Networks (PINNs)

The physics-informed paradigm

Incorporate deviation from physics law
in the loss function with aλparameter to weigh the influence of the physics.
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MOPINNs: Evolutionary multi-objective PINNs1

Problem in ‘regular’ PINNs

λ ∈ [0, 1] is overloaded with different functions:
It is meant to express a preference between physics and data, but
different physical scales between losses → differences in magnitudes,
different numerical characteristics of losses, such as convergence
rates.

Our proposal: MOPINNs

Introduce a multi-objective formulation minθ(ℓdata, ℓphysics)
Evolutionary AutoML to automatically find the best network
architecture

1de Wolff, T., Carrillo, H., Martí, L., & Sanchez-Pi, N. (2022). Optimal architecture discovery for physics-informed neural networks. In A. C.
Bicharra Garcia, M. Ferro, & J. C. Rodríguez Ribón (Eds.), Advances in Artificial Intelligence – IBERAMIA 2022 (pp. 77–88). Cham: Springer
International Publishing



Multi-Objective Optimization

minimize F(x) = ⟨f1(x), f2(x), . . . fm(x)⟩ , with x ∈ D ⊆ Rn
. (1)

Solutions x∗ ∈ argminx∈D F(x) are in the Pareto-optimal set such that:

fi(x∗) ≤ fi(x), ∀ i ∈ {1, ...,m} ; x ∈ D . (2)
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Evolutionary multi-objective optimization2
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Evolutionary
algorithms are
inspired by the notion
of survival of the
fittest from
Darwinian Evolution
and modern genetics.

Advantages: inherent parallel search, and lower susceptibility to the
shape or continuity of the image of the efficient set
Selected algorithms:

Non-dominated sorting genetic algorithm (NSGA-II)
Reference-point-based selection NSGA (NSGA-III)
Multi-objective evolutionary algorithm by decomposition (MOEA/D)

2Coello Coello, C., Lamont, G., & van Veldhuizen, D. (2007). Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and
Evolutionary Computation. New York: Springer, second edition



The (current) MOPINNs Proposal

Use an EMO algo. to search for individuals that minimize
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where individuals express of the network parameters:
network activation function,
number of neurons for each layer, and
λ, the relative trade-off between data and physics losses.

For each individual, train a physics-informed neural network by
minimizing

ℓ(θ, λ) = (1 − λ)ℓdata(θ) + λℓphysics(θ) . (5)



Experiments

Burgers equation:

∂u
∂t

+ u
∂u
∂x

= ν
∂

2u
∂x2

,

u(x,0) = − sin(πx) ,
u(1, t) = u(−1, t) = 0 .

Wave equation:

∂
2
η

∂t2
= ∇ ⋅ (H∇η) ,

η(x, y,0) = e−10((x−0.5)2+(y−0.75)2)
,

∂η

∂t
(x, y,0) = 0 .

Training

Multi-objective algorithm: MOEA/D with 10 generations and a
population size of 25.
Activation functions: LeakyReLU, ReLU, Tanh, Sigmoid, So�plus,
So�sign, TanhShrink, CELU, GELU, ELU, SELU, and LogSigmoid.
Architectures: three hidden layers of up to 100 neurons per layer, in
decreasing order.



Results - Burgers equation

50 × 50 × 40 neurons, λ = 0.15, using the tanh activation function
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Results - Wave equation

60 × 50 × 50 neurons, λ = 0.76, using the SELU activation function
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Results - Wave equation



Multi-level PINNs: Model nutrients in a fluid (eventually NPZ models)

L1. Physics: Fluid
Two-dimensional decaying
turbulence via incompressible
Navier-Stokes,

∂tw + u ⋅ ∇w = A∆w
∇ ⋅ u = 0

u = (u, v): flow velocity field,
w = ∇ × u: vorticity, A: eddy
viscosity.
L2. Biological: Nutrients
Nutrients over fluid as coupled
advection:

∂tN + u ⋅ ∇N = 0

“Modified MLP”3: avoid gradient
issues.
Weighted residual loss:4

ℓr(θ) = 1/Nt

Nt

∑
i=1

wiℓr(ti, θ),

wi = e−ε∑
i−1
k=1 ℓr(tk,θ)

Gate continuous function in the
residual loss:5

ℓr(θ) = 1/Nr

Nr

∑
i=1

ℓr(xi, ti, θ)g(ti),

g(ti) = 0.5 [1 − tanh(α(ti − γ))] .
3Wang, S., Teng, Y., & Perdikaris, P. (2021). Understanding and mitigating gradient flow pathologies in physics-informed neural

networks. SIAM Journal on Scientific Computing, 43, A3055–A3081
4Wang, S., Sankaran, S., & Perdikaris, P. (2022). Respecting causality is all you need for training physics-informed neural networks
5Daw, A., Bu, J., Wang, S., Perdikaris, P., & Karpatne, A. (2023). Mitigating propagation failures in physics-informed neural networks

using retain-resample-release (r3) sampling



Multi-PINNs results
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Modelling stellar atmospheres

Light is created by the interaction
of light with the atoms.
The chemical composition of stars
is encoded in their spectra.

Current: MARCS model6

Table with 52.000 entries mapping
chemical composition to spectra.
Observe spectra, find most similar
on table -> use that composition.
Limited to certain types of stars.
More complex approached “3D” are
too computationally expensive.

Source: Wikipedia.

Use PINNs to learn to map
from spectra to chemical
composition relying on the
model(s) of the
atmosphere(s).

6Gustafsson, B., Edvardsson, B., Eriksson, K., Jorgensen, U. G., Nordlund, A., & Plez, B. (2008). A grid of MARCS model atmospheres for
late-type stars: I. methods and general properties. Astronomy and astrophysics, 486, 951–970



Thanks! ¡Gracias! Merci !

We have briefly presented some of the work we are doing in as part of
project OcéanIA:

focus on understanding complex natural phenomena,
create research tools not just better models, and
problems from completely different contexts share challenges and
difficulties → opportunity for knowledge reuse.
Consolidated code:
https://github.com/Inria-Chile/pypinns.

https://github.com/Inria-Chile/pypinns


Thank you! Obrigado! Merci ! ¡Gracias!
https://inria.cl

https://inria.cl
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