01010

011100

11

MOPINNs: A Multi-Objective AutoML Approach to PINNs

Understanding the Universe One Epoch at a Time

Inria Chile

OcéanIA Annual Meeting
23 February 2024

Inria Chile: Science and projects

Complex dynamical systems: understanding nature

Source: https://soulofmathematics.com/index.ph p/differential-equations/

Source: https:
//secretofflight.wordpress.com/turbulence/

Source: NASA.

Source: C. Fukushima and J. Westerweel, Technical University of Delft

The problem: PDEs are hard!

Finite-element methods

- Mesh based
- Curse of dimensionality
- Parameter change requires
 reevaluation

Neural networks (or ML) for learning PDEs

Training a neural network to the solution

■ Differentiable everywhere
■ Mesh-free approach

- Parameter agnostic

■ Requires a lot of data and ignores domain expert knowledge.

Physics-Informed Neural Networks (PINNs)

The physics-informed paradigm

Incorporate deviation from physics law
in the loss function with a λ parameter to weigh the influence of the physics.

MOPINNs: Evolutionary multi-objective PINNs ${ }^{1}$

Problem in 'regular' PINNs

$\lambda \in[0,1]$ is overloaded with different functions:

- It is meant to express a preference between physics and data, but
- different physical scales between losses \rightarrow differences in magnitudes,

■ different numerical characteristics of losses, such as convergence rates.

Our proposal: MOPINNs

■ Introduce a multi-objective formulation $\min _{\theta}\left(\ell_{\text {data }}, \ell_{\text {physics }}\right)$
■ Evolutionary AutoML to automatically find the best network architecture

[^0]
Multi-Objective Optimization

$$
\begin{equation*}
\text { minimize } \boldsymbol{F}(\boldsymbol{x})=\left\langle f_{1}(\boldsymbol{x}), f_{2}(\boldsymbol{x}), \ldots f_{m}(\boldsymbol{x})\right\rangle, \text { with } x \in D \subseteq \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

Solutions $x^{*} \in \arg \min _{x \in D} \boldsymbol{F}(\boldsymbol{x})$ are in the Pareto-optimal set such that:

$$
\begin{equation*}
f_{i}\left(x^{*}\right) \leq f_{i}(x), \forall i \in\{1, \ldots, m\} ; x \in D . \tag{2}
\end{equation*}
$$

Evolutionary multi-objective optimization ${ }^{2}$

Abstract

Evolutionary algorithms are inspired by the notion of survival of the fittest from Darwinian Evolution and modern genetics.

■ Advantages: inherent parallel search, and lower susceptibility to the shape or continuity of the image of the efficient set
■ Selected algorithms:
■ Non-dominated sorting genetic algorithm (NSGA-II)

- Reference-point-based selection NSGA (NSGA-III)

■ Multi-objective evolutionary algorithm by decomposition (MOEA/D)

[^1]
The (current) MOPINNs Proposal

Use an EMO algo. to search for individuals that minimize

$$
\begin{align*}
\ell_{\text {data }}(\theta) & =\frac{1}{N_{u}} \sum_{i=1}^{N_{u}}\left|B(u)\left(x_{i}^{u}, t_{i}^{u}\right)-B\left(u_{\theta}\right)\left(x_{i}^{u}, t_{i}^{u}\right)\right|^{2} \text { and } \tag{3}\\
\ell_{\text {physics }}(\theta) & =\frac{1}{N_{f}} \sum_{j=1}^{N_{f}}\left|F\left(u_{\theta}\right)\left(x_{j}^{f}, t_{j}^{f}\right)\right|^{2}, \tag{4}
\end{align*}
$$

where individuals express of the network parameters:

- network activation function,

■ number of neurons for each layer, and
■ λ, the relative trade-off between data and physics losses.
For each individual, train a physics-informed neural network by minimizing

$$
\begin{equation*}
\ell(\theta, \lambda)=(1-\lambda) \ell_{\text {data }}(\theta)+\lambda \ell_{\text {physics }}(\theta) \tag{5}
\end{equation*}
$$

Experiments

Burgers equation:

$$
\begin{aligned}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x} & =\nu \frac{\partial^{2} u}{\partial x^{2}} \\
u(x, 0) & =-\sin (\pi x) \\
u(1, t) & =u(-1, t)=0 .
\end{aligned}
$$

Wave equation:

$$
\begin{aligned}
\frac{\partial^{2} \eta}{\partial t^{2}} & =\nabla \cdot(H \nabla \eta) \\
\eta(x, y, 0) & =e^{-10\left((x-0.5)^{2}+(y-0.75)^{2}\right)} \\
\frac{\partial \eta}{\partial t}(x, y, 0) & =0
\end{aligned}
$$

Training

■ Multi-objective algorithm: MOEA/D with 10 generations and a population size of 25 .

- Activation functions: LeakyReLU, ReLU, Tanh, Sigmoid, Softplus, Softsign, TanhShrink, CELU, GELU, ELU, SELU, and LogSigmoid.
■ Architectures: three hidden layers of up to 100 neurons per layer, in decreasing order.

Results - Burgers equation

$50 \times 50 \times 40$ neurons, $\lambda=0.15$, using the tanh activation function

Results - Wave equation

$60 \times 50 \times 50$ neurons, $\lambda=0.76$, using the SELU activation function

Results - Wave equation

Multi-level PINNs: Model nutrients in a fluid (eventually NPZ models)

L1. Physics: Fluid

Two-dimensional decaying turbulence via incompressible Navier-Stokes,

$$
\begin{aligned}
\partial_{t} w+\mathbf{u} \cdot \nabla w & =A \Delta w \\
\nabla \cdot \mathbf{u} & =0
\end{aligned}
$$

$\mathbf{u}=(u, v)$: flow velocity field, $w=\nabla \times \mathbf{u}$: vorticity, A : eddy viscosity.
L2. Biological: Nutrients
Nutrients over fluid as coupled advection:

$$
\partial_{t} N+\mathbf{u} \cdot \nabla N=0
$$

"Modified MLP" ${ }^{3}$: avoid gradient issues.
Weighted residual loss: ${ }^{4}$

$$
\begin{aligned}
\ell_{r}(\theta) & =1 / N_{t} \sum_{i=1}^{N_{t}} w_{i} \ell_{r}\left(t_{i}, \theta\right), \\
w_{i} & =e^{-\varepsilon \sum_{k=1}^{i-1} \ell_{r}\left(t_{k}, \theta\right)}
\end{aligned}
$$

Gate continuous function in the residual loss: ${ }^{5}$

$$
\begin{aligned}
\ell_{r}(\theta) & =1 / N_{r} \sum_{i=1}^{N_{r}} \ell_{r}\left(x_{i}, t_{i}, \theta\right) g\left(t_{i}\right) \\
g\left(t_{i}\right) & =0.5\left[1-\tanh \left(\alpha\left(t_{i}-\gamma\right)\right)\right]
\end{aligned}
$$

[^2]
Multi-PINNs results

PINN solutions, $\mathrm{t}=0.02$

Modelling stellar atmospheres

- Light is created by the interaction of light with the atoms.
- The chemical composition of stars is encoded in their spectra.

Current: MARCS model ${ }^{6}$

■ Table with 52.000 entries mapping chemical composition to spectra.
■ Observe spectra, find most similar on table -> use that composition.

- Limited to certain types of stars.

■ More complex approached "3D" are too computationally expensive.

Source: Wikipedia.
Use PINNs to learn to map from spectra to chemical composition relying on the model(s) of the atmosphere(s).

[^3]
Thanks! ¡Gracias! Merci !

We have briefly presented some of the work we are doing in as part of project OcéanIA:

- focus on understanding complex natural phenomena,

■ create research tools not just better models, and
■ problems from completely different contexts share challenges and difficulties \rightarrow opportunity for knowledge reuse.
■ Consolidated code: https://github.com/Inria-Chile/pypinns.

01010

100

011100

Thank you! Obrigado! Merci ! ¡Gracias! https:\%/inria.cl

[^0]: ${ }^{1}$ de Wolff, T., Carrillo, H., Martí, L., \& Sanchez-Pi, N. (2022). Optimal architecture discovery for physics-informed neural networks. In A. C. Bicharra Garcia, M. Ferro, \& J. C. Rodríguez Ribón (Eds.), Advances in Artificial Intelligence - IBERAMIA 2022 (pp. 77-88). Cham: Springer International Publishing

[^1]: ${ }^{2}$ Coello Coello, C., Lamont, G., \& van Veldhuizen, D. (2007). Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation. New York: Springer, second edition

[^2]: ${ }^{3}$ Wang, S., Teng, Y., \& Perdikaris, P. (2021). Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43, A3055-A3081

[^3]: ${ }^{6}$ Gustafsson, B., Edvardsson, B., Eriksson, K., Jorgensen, U. G., Nordlund, A., \& Plez, B. (2008). A grid of MARCS model atmospheres for late-type stars: I. methods and general properties. Astronomy and astrophysics, 486, 951-970

