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Project OcéanIA: General goals

OcéanIA
AI, ML, and modeling: understand processes and propose policies

Cut the vicious cycle!

CLIMATE
CHANGE

OCEAN

Destruction of Ocean healing capacity

Vicious cycle:
salinity,

heatwaves,
ecosystem

destruction, low
carbon capture,

etc.

Three big questions

Main climate change mitigator

How the ocean
mitigates climate

change?

How the ocean is
changing because
climate change?

What to do to protect
this mitigation e�ect? 



Towards remote identification of ocean ecosystems



Identifying plankton species

Plankton images are easier
and cheaper to obtain than
genetic sequences (DNA, RNA,
etc.),
but harder to annotate ->
require experts.
different cameras,
expeditions, processing, etc.

For instance, EcoTaxa:1

+320 million images
≈ 4 million tagged as ‘living’
≈ 8 million as ‘non-living’

1Picheral, M., Colin, S., & J.-O., I. (2017). EcoTaxa, a tool for the taxonomic classification of images



Zooscan dataset (≈ 1.4M EcoTaxa subset, high quality)2
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Woods Hole Oceanographic Inst. (WHOI) (≈ 3.6M, B&W/low quality)3
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2Amanda, E., Corinne, D., Laetitia, J., Marion, O., Jean-Baptiste, R., Manoela, C. B., Fabien, L., , Natalia, L., Justine, C., Louis, C.-C., Bruno, S.,
Jean-Olivier, I., Gaby, P. M. G., & Lars, S. (2017). Zooscannet: plankton images captured with the zooscan. SEANOE

3Orenstein, E. C., Beijbom, O., Peacock, E. E., & Sosik, H. M. (2015). Whoi-plankton- A large scale fine grained visual recognition
benchmark dataset for plankton classification. CoRR, abs/1510.00745



First step: the supervised way

Xception,4 Efficientnet v2,5 ConvNeXt6, Inception,7 SWIN s3,8

and DeiT9.
Data augment, adapt weighted resampling, focal loss, etc.

• We note however that distributions are blurred by the sheer size and standard deviation of
some classes, or subset thereof. This can be observed in figure 10a representing the di↵erent sub
classes taken from the Zooscan taxonomic tree, where two sub classes (Irrelevant and Opithonska-
Crustacea, in purple and yellow respectively) dominate the embedding projection. When plotting
the same sub classes distribution but excluding Irrelevant samples (artefacts, detritus and non
plankton images), we achieve a much cleaner projection which shows clear boundaries between
di↵erent classes, even though it is dominated by the Opithonska-Crustacea sub class.

(a) Embedding at epoch 1 (b) Embedding at epoch 25

Figure 9: T-SNE visualisation of feature space at the beginning 9a and at the end9b Zooscan v5
training. Labels refer to individual classes.

(a) T-SNE visualisation of subclasses (b) T-SNE visualisation of subclasses

Figure 10: T-SNE visualisation of feature space at the end of Zooscan v5 training for subclasses from
the taxonomic tree. Subfigure 10a includes irrelevant samples, Subfigure 10b is without.

This highlights the major di�culty we face working with our datasets: in order to classify plankton
species, the classifier should first be able to distinguish between Irrelevant and Relevant samples, so
as to simplify its task. All the more so as sub classes are empirically close to one another in the
embedding projection (see figures 10a and 10b), this new distinction problem lays the foundations for
the second part of our work (see section ??).
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(a) Base Image (b) GradCam heatmaps from 3 experiments using di↵erent models

Figure 12: Sample from the Metanauplii class and its heatmap signatures in 3 di↵erent models (from
left to right: DeiT, Swin and Xception) using GradCam

5.0.4 GradCam visualisation

To further refine our analysis, we also use a visualisation technique for computer vision deep learning
models called GradCam [20], which allows to detect points of interest in an image by mapping gradients
from a particular layer. Our initial intuition is that areas where gradient is the highest would correspond
to the most discriminating part of the image, i.e. the location responsible for the model prediction.
This would help explaining better the mechanics of our deep learning models.

(a) Base Image (b) GradCam heatmaps from 3 experiments using di↵erent models

Figure 11: Sample from the Calanoida class and its heatmap signatures in 3 di↵erent models (from
left to right: DeiT, Swin and Xception) using GradCam

• Figures 11 and 12 display GradCam heatmaps from the Calanoida and Metanauplii classes.
The former is a very well documented plankton specie with more than 200, 000 samples, and
as such has a large standard deviation; the latter refers to an intermediate development stage
of crustacean plankton and is relatively small with only 186 samples. These figures provide
comfort that our models are able to identify important locations within the images, namely the
body and the legs of the Calanoida, or the claws of the Metanauplii, which are some of the class
features. Additionally, in these two samples the Swin transformer misclassifies the images, as
shown by rough heatmaps, especially for the Metanauplii sample where heat points focus on
less relevant parts (corners and tail). GradCam images are particularly beneficial in identifying
misclassifications and errors in our models.

• Figures 13 and 14 display other samples from the same Calanoida and metanauplii classes, but
now visualising gradients at di↵erent depth inside the models (respectively Swin, Xception and
DeiT, from top to bottom). This allows us to follow gradient flow from layer to layer, thus provid-
ing information on how a model handles an image, further helping us understanding its inferences.

• From Figure 11, we observe that all models pick up the di↵erent parts and features of the
sample. First, they identify the legs, then highlight the dark oval body, and finally settle on the

13
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4Chollet, F. (2016). Xception: Deep learning with depthwise separable convolutions. CoRR, abs/1610.02357
5Tan, M. & Le, Q. V. (2021). Efficientnetv2: Smaller models and faster training. CoRR, abs/2104.00298
6Liu, Z., Mao, H., Wu, C., Feichtenhofer, C., Darrell, T., & Xie, S. (2022). A convnet for the 2020s. CoRR, abs/2201.03545
7Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2014). Going deeper with

convolutions. CoRR, abs/1409.4842
8Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shi�ed

windows. CoRR, abs/2103.14030
9Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., & Jégou, H. (2020). Training data-efficient image transformers & distillation

through attention. CoRR, abs/2012.12877



Step 2: Hierarchical classification

Intuitively, it makes sense to
exploit the taxonomy information.

Branch CNN10

Hierarchical bilinear CNN11

Branch-attention CNN12

Segregated BA-CNN model:
branches for living and non-living.

Feature
Extractor

Feature
Block

Feature
Block

Feature
Block

Feature
Block

Head

Head Head

Head Head

Attention MechanismInput

Non-living Branch

Living Branch

10Zhu, X. & Bain, M. (2017). B-CNN: branch convolutional neural network for hierarchical classification. CoRR, abs/1709.09890
11Zhang, X., Tang, L., Luo, H., Zhong, S., Guan, Z., Chen, L., Zhao, C., Peng, J., & Fan, J. (2021). Hierarchical bilinear convolutional neural

network for image classification. IET Computer Vision, 15
12Pizarro, I., Ñanculef, R., & Valle, C. (2023). An attention-based architecture for hierarchical classification with cnns. IEEE Access, 11,

32972–32995



Hierarchical classification results
Table 3: Results table from hierarchical experiments. Individual results for each level in the taxonomic
tree are shown. Metrics used at each level are Accuracy, F1Score, Precision and Recall, aggregated using
a macro mean, except for F1Score which uses a weighted mean. The flat baseline results correspond to
the Zooscan_v5 experiment from Section 3.

Hierarchical Experiments
Experiment

Names
First Level Second Level Third Level

Acc F1 Pre Rec Acc F1 Pre Rec Acc F1 Pre Rec
Flat Baseline X X X X X X X X 88.5 89.6 91.2 88.5

B-CNN 97.1 97.1 97.1 97.1 95.8 95.8 95.1 94.7 92.3 92.3 92.6 90.6
HB-CNN 97.2 97.2 97.2 97.2 95.6 95.5 94.8 94.0 92.0 91.9 91.8 89.0
BA-CNN 98.7 98.7 98.7 98.7 95.9 95.8 95.5 94.9 92.2 92.1 92.3 89.5
SBA-CNN 97.2 97.2 97.2 97.2 90.2 90.8 89.1 90.2 83.7 88.4 89.7 83.7

Table 4: Detailed results table from the Segregated BA-CNN experiments. Individual results for each
branch of the model are shown for every metric (Accuracy, F1Score, Precision and Recall).

Results from the SBA-CNN architecture at each branch level
Metric Name Accuracy F1Score Precision Recall
Binary Head 97.2 97.2 97.2 97.2
Branch_1_1 93.9 91.2 92.4 90.0
Branch_1_2 89.5 82.8 85.8 80.6
Branch_2_1 99.5 98.5 98.5 98.4
Branch_2_2 95.8 90.6 90.4 91.0

that relevant classes have a smaller variance compared to the irrelevant classes. This is good news,
as di�erentiating between di�erent types of detritus in our context is not a priority.

• The SBA-CNN model for individual branches is on par with all other models, being the best with BA-
CNN for the relevant sub-tree. This means that the level of information from the irrelevant branch
needed to classify relevant samples is low, thus supporting the irrelevance of the irrelevant sub-tree
from a computer science point of view.

Finally, we assess the output coherence for all four models. While classes follow a strict hierarchy,
models have the ability to output a triplet of labels which may not fall in line with this hierarchy. For
example, a model may predict the triplet (Relevant, Harosa, Pontellidae), even though the Pontellidae class is
not from the Harosa family, but rather in the Crustacea subtree. This is to be avoided, first because we want
the model to perform well on each level, second because we want our models’ outputs to be trustworthy
for outside users (a necessity for the model to be used in embarked vehicles). We have therefore calculated
in Table 6 the Coherence accuracy 16 of all 4 models, both for the whole test set as well as for individual
branches.

• Results from Table 6 show that, although coherence accuracy is high for every model, BA-CNN re-
mains the clear winner. The flow of information both top-down and bottom-up allows the model to
make better informed and more coherent inferences. We also note that the SBA-CNN displays a high
coherence accuracy, in between the B-CNN/HB-CNN duo and the BA-CNN model. This was to be
expected as its architecture inherently restricts it to more coherence, thanks to the initial segregation
between relevant and irrelevant samples.

16We define coherence accuracy as accuracy applied to label triplets, meaning that only outputs matching the target for all three
layers are considered correct.
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Table 5: Results table from hierarchical experiments for the two branches. Individual results for each level
in the taxonomic tree are shown. Metrics used at each level are Accuracy, F1Score, Precision and Recall,
being aggregated using a macro mean, ecep for F1Score which uses a weighted mean.

Hierarchical results for individual branches
Experiment

Names
Specific Branch Second Level Third Level

Relevant Irrelevant Acc F1 Pre Rec Acc F1 Pre Rec
B-CNN X 98.9 99.6 94.3 98.9 94.5 96.5 95.3 94.5

HB-CNN X 98.9 99.5 94.0 98.9 93.2 96.4 95.0 93.1
BA-CNN X 99.2 99.7 96.8 99.2 93.1 96.5 95.3 93.1

SBA-CNN X 99.2 99.7 99.2 99.2 93.1 96.2 91.4 93.1
B-CNN X 91.9 94.2 87.7 91.9 83.8 90.1 87.0 83.1

HB-CNN X 91.1 94.1 87.8 91.1 80.7 89.8 87.1 80.7
BA-CNN X 92.0 94.4 91.7 92.0 83.1 90.1 88.0 83.1

SBA-CNN X 89.8 93.9 92.6 89.8 80.0 89.5 85.3 80.0

Table 6: Coherence accuracy table from all hierarchical experiments. Results are shown for the two sep-
arate branches, and for the total test set. The coherence accuracy is calculated as a micro average of all
samples.

Coherence Accuracy

Branches Model architecture
B-CNN HB-CNN BA-CNN SBA-CNN

Relevant 93.4 93.4 95.2 93.7
Irrelevant 87.0 87.2 88.5 87.7

Total 90.1 90.2 91.8 90.1

As such, and viewing from Tables 3, 4, 5 and 6, we can a�rm that the BA-CNN architecture is the best
performing one on our Zooscan hierarchical dataset.

4.3.2 Qualitative Results
Alongside the quantitative results from section 4.3.1, we try to explain what happens qualitatively in
the model’s decision-making process. In Figures 17 and 16, we reconstruct the actual hierarchy built
by the di�erent models, from each model’s predictions at every level. Here, the width of an edge (u, v)
corresponds to the relative number of times the model predicted the nodes (u, v) compared to the actual
number of samples of u. This impeaches the chart to be one-sided due to class imbalances. We then apply
a square root regularisation to improve readability.

Our takeaways are as follows:
• In all three sub-graphs, the detritus subclass is confused with almost every class. This is coherent

with our observations from section 3, in particular the visualisation from the embedding space of
our feature extractors - the detritus class being broad and diverse, it inherently interferes with every
other class.

• By comparing Figure 17c with 17a and 17b we also observe that, between the first layer and the
second layer, predictions are less incoherent between irrelevant and relevant samples (i.e. samples
for which the model predicts the irrelevant sample alongside a subclass from the relevant part of the
tree, and vice-versa). Simply put, the two flows (relevant and irrelevant) are more separated. This
correlates positively with results from Table 3 suggesting that the BA-CNN model is better for the
first layer prediction. Indeed, the fact that information from all branches flow up and down through
the attention mechanism makes the first branch receive information from the deeper layers, helping
it perform better and be more coherent.
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Step 3: What about the masses of unlabeled data?

Out-of-distribution detection methods analyze the output of a
classifier to determine if the input is OOD or ‘unknown’.
The definition of OOD-ness -as outliers- is somewhat intuitive and
based on context.
Use existing annotated datasets to evaluate the quality of anomaly
detection.

OOD patterns in classifiers



Using adversarial examples for OOD detection

Use ‘known OODs’ and induce ‘flat logits’ behavior via loss function.
Leave one class out and use it for OOD evaluation (for all classes).
OOD detection bumped from 58% to 93% retaining classifier
performance!

Current: Hey, AI, generate some
(fake/adversarial) plankton examples
to use as OODs!
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Multi-modal/multi-task approach

Figure 4: The schematic diagram of our proposed networks.

2.1.2 Chimeras Construction

To facilitate the anomaly image detection pipeline. We manually create a random com-
bination of two plankton images as ”Chimeras” to serve as a kind of anomaly. Specifi-
cally, we first randomly choose two images from two categories, respectively. We use
a vertical line to split the two images, and create a new image by concatenating the left
half of the first and the right half of the second image, horizontally. We create a new
category named ”Chimeras” which has the same number of images as other categories
in the dataset, i.e., 500 images in the training set and 140 images in the testing set. We
visualize some examples in Fig. 2.

2.1.3 Generic Image Category

We also set a generic image category in the Lensless dataset where images containing
generic objects are collected. These images can be served as another kind of anomaly
as they do not contain plankton objects. We collect the images from the MS-COCO
dataset randomly and create another category named ”COCO”. Some examples can be
seen in Fig. 3.

3 Methodologies
Fig.4 provides a schematic diagram of the whole model. We analysis each block of the
model in the following parts.

3.1 Data Augmentation
To facilitate self-supervised contrastive learning, we perform data augmentation for the
input plankton image before forwarding it to the Transformer network. Specifically, the
image is parallelly augmented to two visual inputs, expressed as,

x1 = DA1(image)

x2 = DA2(image)
(1)

3

Classification: known plankton species in
training dataset.
Zero-shot classification: known plankton
species not in dataset.
Anomaly detection: beyond OOD with
contrastive learning.

Tech Report: Plankton image recognition

October 20, 2022

1 Introduction

Figure 1: Examples from Lensless dataset.

Figure 2: Examples from the newly added chimeras images.

Figure 3: Examples from the newly added coco images.

Monitoring plankton populations in situ are fundamental to preserving the aquatic
ecosystem [1]. Plankton microorganisms are in fact susceptible to minor environmental
perturbations, that can reflect consequent morphological and dynamical modifications.
Plankton is a collection of aquatic microorganisms floating passively in the water. It
plays a big role in the marine ecosystem. Plankton is indeed at the basis of the aquatic
food chain, with phytoplankton being estimated to have produced approximately 50%
of the total oxygen in our atmosphere [2]. Thus, detecting and studying plankton pop-
ulations in situ is paramount to protecting marine ecosystems.

Recently, there has been a surge in interest in models based on artificial neural
networks (ANNs), due to their successes in big data problems and their high expressive

1



Multi-modal/multi-task learning: zero-shot results
Plankton Recognition 24/36

Experimental results: zero shot learning
We then report the results of zero-shot learning for novel plankton species detection of
di�erent methods.
We use the Top-k accuracy to evaluate the zero-shot learning.

top-k acc(y , f ) = 1
N

Nÿ

i=1

kÿ

j=1
1(fi,j == yi) (5)

where fi,j is the predicted class for the i-th sample corresponding to the j-th largest
predicted score. yi is the corresponding true label. N is the number of samples, k is the
number of gueses, and 1 is the indicator function.

Methods Top-1 Top-2 Top-5 Top-10
Proto-net + Constrasive 0.71 96.43 100.0 100.0
w/o Supervised Contrastive 1.43 96.43 100.0 100.0
Full model 12.86 100.0 100.0 100.0

Table 2: The results on the unseen classes.
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Experimental results: zero shot learning

Figure 8: The confusion matrix of the model on the proto-net baseline with contrastive learning.
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Experimental results: zero shot learning

Figure 10: The confusion matrix of our full model
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Multi-modal/multi-task learning: Anomaly detection results

Considering “Chimera” and “COCO” as the anomalies:

Plankton Recognition 30/36

Experimental results: anomaly detection

We consider the minimum cosine simlarity of one image sample with all the other image
samples as the anomaly score and report the AUC evaluation metrics of our full mode. We
consider the class "Combination" and "COCO" as the anomaly ground truth.
The results are shown as follows:

Methods AUC (Overall)
w/o Supervised Contrastive 71.64
w/o Gromov-Wasserstein 78.77

Full model 96.25
Table 4: The AUC results of our anomaly detection
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Anomaly visualization

Figure 12: Visualization of some anomaly examples: including the rare false positives.
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What’s next?

Publish papers, papers, papers,
(Re)using pretrained multi-modal models like CLIP13: human-readable
explanations and more,
imbalance learning by mixing augmentation and resampling,
domain adaptation respecting domain constraints (causality),
invariant representation learning,14 and
aggregation of images: What can we deduce relying on geographical
distance and time between images?

OcéanIA deep-plankton.
plankton datasets, +700 models, all bells and whistles, scalable
multi-host/multi-gpus, sharing models, etc.! Demo link.
Best partner: Ecotaxa (model distillation, scalable inference).

13Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., & Sutskever, I.
(2021). Learning Transferable Visual Models From Natural Language Supervision

14Kwon, S., Choi, J. Y., & Ryu, E. K. (2023). Rotation and Translation Invariant Representation Learning with Implicit Neural
Representations

https://github.com/Inria-Chile/deep-plankton
https://huggingface.co/inria-chile/resnet18_lensless


Merci ! ¡Gracias! Thank you!

Questions?


