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Climate Change Driver: CO2 emissions

https://svs.gsfc.nasa.gov/5110



Climate Change Mitigator: Planet Ocean

https://www.visualcapitalist.com/countries-by-share-of-earths-surface/
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Thermohaline circulation: great ocean conveyor belt



Characterization of these water masses:
- Temperature-Salinity diagrams
- Isotopes (H, C, O)
- Bioinformatics

Cross section of the deep circulation in the Atlantic Ocean
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http://www.cev.washington.edu/file/Earth_and_Ocean_Processes.html

Bio-Geo-Physicochemical Oceanography: Marine Ecosystems
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Key Invisible Microbiome World & Biological Carbon Pump

80% of marine life is made up of 
microorganisms

50% of the oxygen produced 
each day is provided by marine 

microorganisms

30% of the CO2 emitted each 
day is captured by the ocean 

and its biodiversity.
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Sunagawa et al. (2020)
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Ambitious goal: towards global ocean ecosystems biology



Global plankton communities: multi-omics data



Global plankton communities: multi-omics data



ATGC...CTGGG90

~ 57.000 million reads (90 pb ±2.6pb)
Metagenomic dataset only:

~ 42 million genes

~ 200 metagenomes:
~ 230000 scaffolds, N50: 1300pb (average)

Gene1 Gene2 ... Gene42M

metaG1

metaG2

...

metaG200

GCCC...AAAAG90

TTCA...TTTCC90

GGGGA...AGCTA90

...

(meta)genome assembly

Functional annotation
Quantification
Normalization

Ocean Microbial Reference Gene Catalog v2



Edges: enzymes
Dots: metabolites

Metabolic pathways – Reference pathway



Metabolic pathways – Reference pathway
KEGG pathway example:  Photosynthesis



Understanding plankton communities using AI & ML

Image by Luis Martí

Goals: 
Mapping D -> C
Mapping C -> D 

Can the properties of water be inferred from the taxonomic and 
functional composition of plankton communities?  

Is it feasible to infer the composition of plankton communities from 
the properties of water? 



Overview: Global patterns of Plankton Communities

Gene1 Gene2 ... Gene47M

metaG1

metaG2

...

metaG200

Genes with known 
molecular function
(KEGG): 11 M genes

172 samples x 46.7M genes

Group abundances 
of genes with equal 
molecular function: 

KO1 KO2 ... KO9024

metaG1

metaG2

...

metaG200

172 samples x 9024 molecular functions

Metagenomic composition

Metatranscriptomic composition

178 samples with similar number of columns.



Overview: Global patterns of Plankton Communities



Overview: Global patterns of Plankton Communities
UMAP model

UMAP + Autoencoder model 



Overview: Global patterns of Plankton Communities

Environmental data exploration



Overview: Global patterns of Plankton Communities

[NO3] [PO4]

Environmental data exploration



Overview: Global patterns of Plankton Communities

Polarity

Depth Layers

Oceans

Local 
relationships

Global
relationships

K
15 60

Environmental data exploration: potential niches



Overview: Global patterns of Plankton Communities

Input: metagenomic dataset (47M genes)



Overview: Global patterns of Plankton Communities

Input: metagenomic dataset (9024 Molecular Functions)



Overview: Global patterns of Plankton Communities
Input: metagenomic dataset (453 pathways)



Overview: Global patterns of Plankton Communities

Input: metatranscriptomic dataset (8935 Molecular Functions)



Overview: Global patterns of Plankton Communities
Input: metagenomic dataset (2124 Genus level)



Understanding plankton communities using AI & ML

Image by Luis Martí

Goals: 
Mapping D -> C
Mapping C -> D 

Can the properties of water be inferred from the taxonomic and 
functional composition of plankton communities?  

Is it feasible to infer the composition of plankton communities from 
the properties of water? 



Symbolic regression (SR) consists in the inference 
of a free-form symbolic analytical function (𝑓):

𝑓: ℝ! → ℝ

𝑦 = 𝑓(𝑥", … , 𝑥!)

(𝑥", … , 𝑥!)

That fits

given data

Predicting environmental conditions from plankton features



Predicting environmental conditions from plankton features
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Predicting environmental conditions from plankton features
Given a set of environmental parameters E = {y1,y2,...,yn}, and a set of input datasets {D1,D2,...,D11}, 

the prediction process using symbolic regression can be described as follows.

Metagenomic data predicting 
environmental target



Predicting environmental conditions from plankton features



Predicting environmental conditions from plankton features



Predicting environmental conditions from plankton features



Predicting environmental conditions from plankton features



Predicting environmental conditions from plankton features
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Glutathione Metabolism (KO6048)

K00856: adenosine kinase.
K11927: ATP-dependent RNA
helicase.
K06048: glutamate-cysteine
ligase carboxylate-amine
ligase,



Predicting environmental conditions from plankton features

Chl: Chlorophyll A,NO3: Nitrate,N: Nitrite plus nitrate,NPP: Net Primary
Production,L: Latitude,T:Temperature,D: Density,S: Salinity,I: Iron,Si:
Silicate.



Predicting environmental conditions from plankton features

Sunagawa et al. (2020)

SR
F

DC
M

M
ES



Understanding plankton communities using AI & ML

Image by Luis Martí

Goals: 
Mapping D -> C
Mapping C -> D 

Can the properties of water be inferred from the taxonomic and 
functional composition of plankton communities?  

Is it feasible to infer the composition of plankton communities from 
the properties of water? 



Predicting plankton features from environmental conditions

Using environmental features to predict directly key metagenomic features

K05724 0.9868 5.4993143e-6/(Iron5m - 0.94)

K00275 0.8970 -0.072*DepthN - 0.072*PO4 + 0.072*Temp + 0.851

K11927 0.8796 0.173*ChlorophyllA - 0.173*Temp + 0.173*sin(O2) + 0.307

K15551 0.8693 -0.021*DepthN - 0.071*Temp + 0.1127

K03433 0.8610 0.333*log(DepthN + 1.612)

K02037 0.8584 (0.0457*Iron5m + 0.200)/(PO4 + 1.156)

K15635 0.8553 0.202*log(DepthN + 1.570)

K03163 0.8489 DepthN*(0.075 - 0.0186*Longit) + 0.0435

K07574 0.8394 -0.062*Temp + 0.062*sin(Latit*(-CarbonT + ChlorophyllA - Latit)) + 0.09

K02533 0.8270 0.093*Temp + 0.297

K13525 0.8264 0.470*log(DepthN + 1.654)

K05501 0.8166 0.030*ChlorophyllA + 0.030*O2 + 0.108

K05934 0.8053 0.061*DepthN + 0.061*sin(DepthN) + 0.0619

K00324 0.8007 0.216*Temp + 1.201

61 Molecular Functions
(from metagenomic dataset) 



Predicting plankton features from environmental conditions

Using environmental features to predict directly key metagenomic features

Glycine, serine and 
threonine metabolism

0.865 ChlorophyllA - Temp + 25.171

Retinol metabolism 0.838 0.126*DepthN - 0.126*Temp + 0.470

Leishmaniasis 0.821 0.089*DepthN + 0.104

Phenylalanine 
metabolism

0.820 0.536*ChlorophyllA - 0.536*Temp + 6.649

Fanconi anemia 
pathway

0.811 0.181*DepthN + 0.195

Basal transcription 
factors

0.810 log(DepthN + 1.800)

Mitophagy 0.805 0.145*DepthN - 0.145*Temp + 0.979

79 Pathways
(from metagenomic dataset) 



Overview: Global patterns of Plankton Communities

metagenomic dataset 
(9024 Molecular Functions)

metagenomic dataset 
(453 pathways)

metatranscriptomic dataset 
(8935 Molecular Functions)

Predicting plankton features from environmental conditions

Environmental features Environmental features Environmental features

Symbolic
Regressions

Symbolic
Regressions

Symbolic
Regressions

UMAP
+

Autoencoder

UMAP
+

Autoencoder

UMAP
+

Autoencoder



Predicting plankton features from environmental conditions



After reducing the dimensionality of each of the datasets and visualizing general patterns, the influence of polarity and the 
depth at which the sample was taken stand out. Categories such as provinces or oceans only group samples when they come 
from the surface. 

Conclusion

There is a subset of environmental variables that are consistently predicted by omics data, reflecting their potential regulation.

Similarly, there is a subset of omics-origin variables that are predicted with high performance, also indicating potential 
mechanisms of gene expression regulation based on environmental factors.

Depending on the layers analyzed, differences may focus on the use of antibiotics in surface layers, or on processes 
related to protein folding or proteostasis when compared with deeper layers.

Joint work with Nahuel Pilquinao, José Vásques, Luis Martí, Nayat Sánchez-Pi.
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(Metagenomic) Layers Characterizacion: SRF vs DCM (5 vs 55 m depth)

TetR/AcrR family 
transcriptional 

regulator



(Metagenomic) Layers Characterizacion: SRF vs DCM (5 vs 55 m depth)



(Metagenomic) Layers Characterizacion: SRF vs MES (5 vs 500 m depth)


