

Modeling global plankton communities via multiomics and ML approaches

### Luis Valenzuela Inria Chile Research Center, Las Condes, Chile.

luis.valenzuela@inria.cl
 https://inria.cl

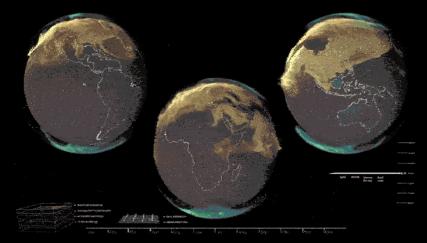
Réunion Annuel OcéanIA

23 February 2023

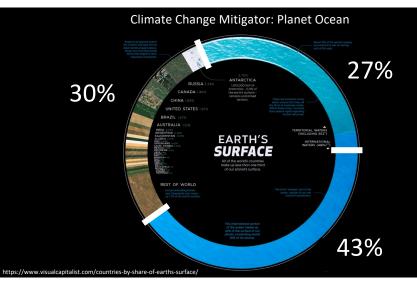


<sup>1</sup>Joint work many others.

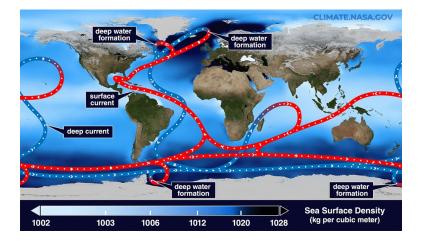
### Climate Change Driver: CO<sub>2</sub> emissions



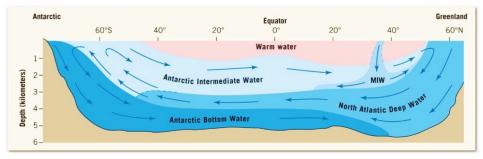
https://sys.gsfc.pasa.gov/5110



### Thermohaline circulation: great ocean conveyor belt



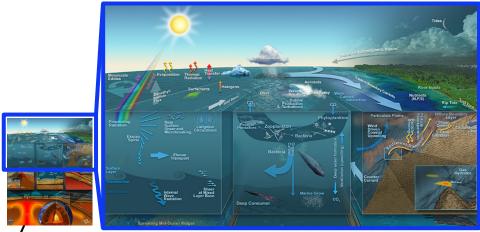
# Cross section of the deep circulation in the Atlantic Ocean



Characterization of these water masses:

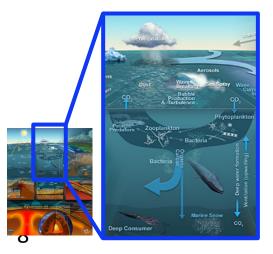
- Temperature-Salinity diagrams
- Isotopes (H, C, O)
- Bioinformatics

### Bio-Geo-Physicochemical Oceanography: Marine Ecosystems



http://www.cev.washington.edu/file/Earth\_and\_Ocean\_Processes.html

# Key Invisible Microbiome World & Biological Carbon Pump

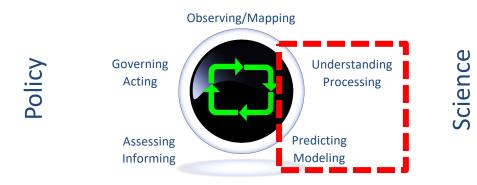


# 80% of marine life is made up of microorganisms

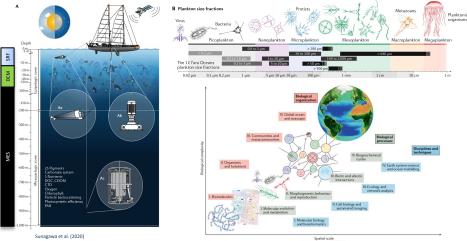
### 50% of the oxygen produced each day is provided by marine microorganisms

30% of the CO2 emitted each day is captured by the ocean and its biodiversity.

# Management of marine ecosystems

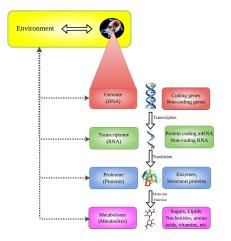


### Ambitious goal: towards global ocean ecosystems biology

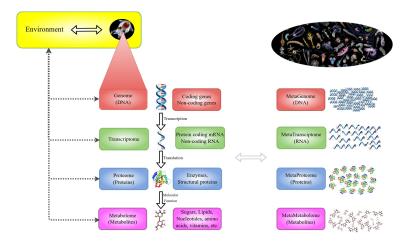


From nanometres to 40,000 km

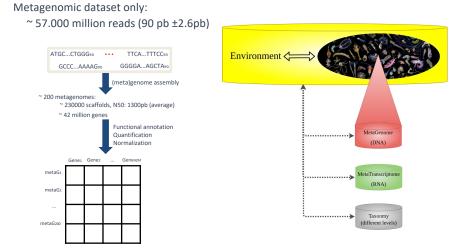
### Global plankton communities: multi-omics data



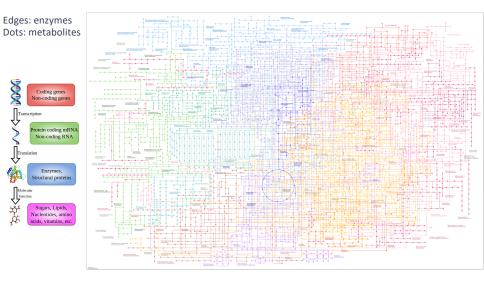
### Global plankton communities: multi-omics data



## Ocean Microbial Reference Gene Catalog v2

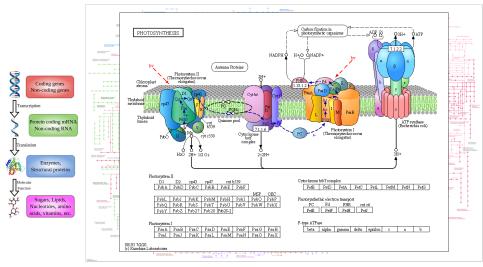


### Metabolic pathways – Reference pathway



# Metabolic pathways – Reference pathway

### KEGG pathway example: Photosynthesis



### Understanding plankton communities using AI & ML

Can the properties of water be inferred from the taxonomic and functional composition of plankton communities?

Is it feasible to infer the composition of plankton communities from the properties of water?

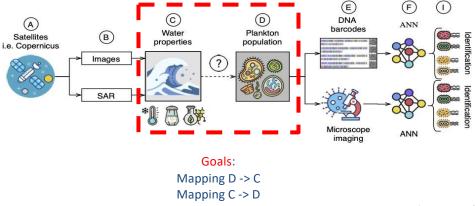
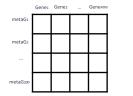


Image by Luis Martí

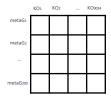
#### Metagenomic composition

### 172 samples x 46.7M genes



Genes with known molecular function (KEGG): 11 M genes Group abundances of genes with equal molecular function:

#### 172 samples x 9024 molecular functions

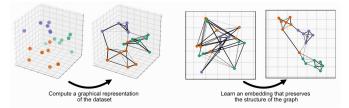


#### Metatranscriptomic composition

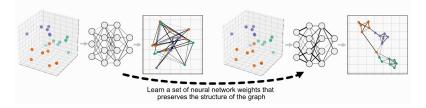
178 samples with similar number of columns.

| Dataset        | Cardinality | Description                                                                                                    |  |
|----------------|-------------|----------------------------------------------------------------------------------------------------------------|--|
| Environment    | 30          | Measurements of environmental parameters, encompassing both physical and chemical attributes of water samples. |  |
| Genomic        | 9024        | Abundances of molecular functions inferred from metagenomic assays employing the KEGG annotation database.     |  |
| Transcriptomic | 8935        | Abundances of molecular functions identified from metatranscriptomic assays via the KEGG annotation database.  |  |
| Domain         | 3           | Relative abundances of taxonomic compositions at the Archaea, Bacteria, and Eukary-<br>ota level.              |  |
| Phylum         | 170         | Relative abundances of taxonomic compositions at the phylum level.                                             |  |
| Class          | 379         | Relative abundances of taxonomic compositions at the class level.                                              |  |
| Order          | 534         | Relative abundances of taxonomic compositions at the order level.                                              |  |
| Family         | 587         | Relative abundances of taxonomic compositions at the family level.                                             |  |
| Genus          | 2134        | Relative abundances of taxonomic compositions at the genus level.                                              |  |

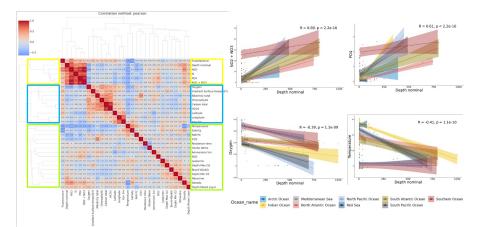
#### UMAP model



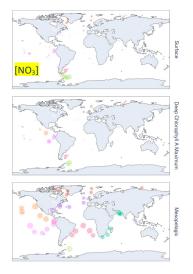
#### UMAP + Autoencoder model



#### Environmental data exploration







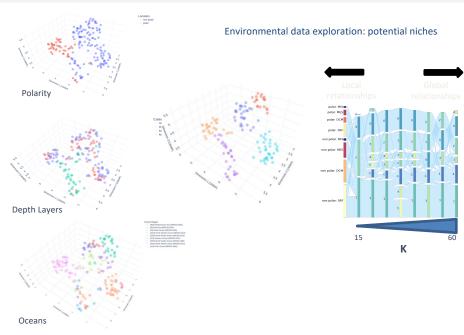






#### Ocean Name

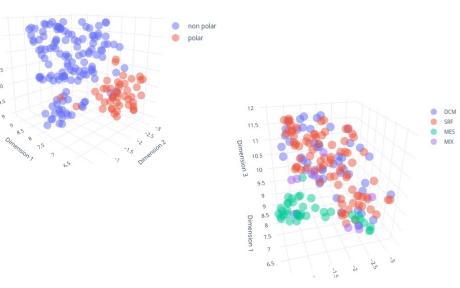
- Mediterranean Sea
- Arctic Ocean
- Indian Ocean
- North Atlantic Ocean
- North Pacific Ocean
- Red Sea
- South Atlantic Ocean
- Southern Ocean
  - South Pacific Ocean



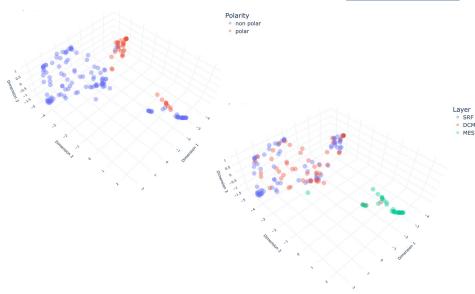
12

11.5

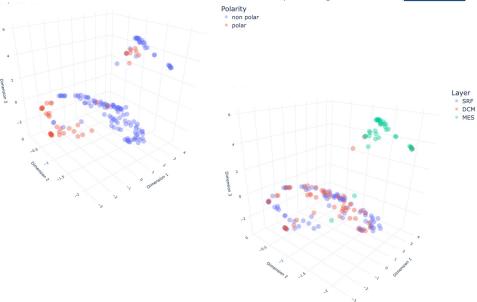
Dimension 3



#### Input: metagenomic dataset (47M genes)



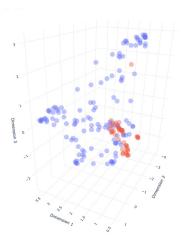
#### Input: metagenomic dataset (9024 Molecular Functions)



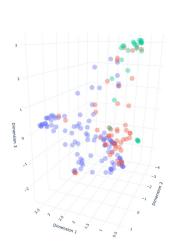
### Input: metagenomic dataset (453 pathways)

Polarity

non polar
polar

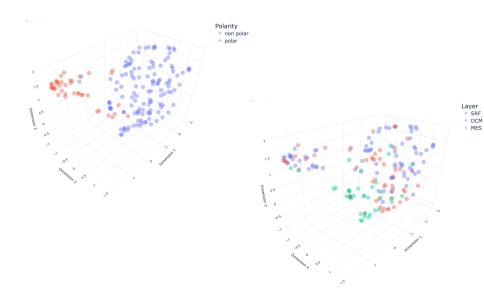


#### Input: metatranscriptomic dataset (8935 Molecular Functions)





#### Input: metagenomic dataset (2124 Genus level)



### Understanding plankton communities using AI & ML

Can the properties of water be inferred from the taxonomic and functional composition of plankton communities?

Is it feasible to infer the composition of plankton communities from the properties of water?

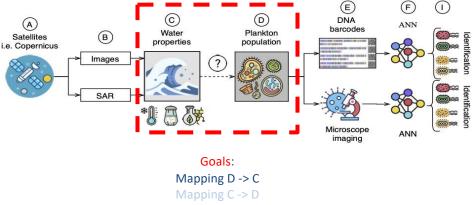


Image by Luis Martí

Symbolic regression (SR) consists in the inference of a free-form symbolic analytical function (f):

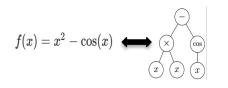
$$f\colon \mathbb{R}^n \to \mathbb{R}$$

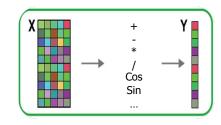
That fits

$$y = f(x_0, \dots, x_n)$$

given data

 $(x_0,\ldots,x_n)$ 





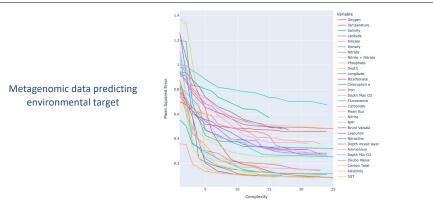


Given a set of environmental parameters  $E = \{y_1, y_2, ..., y_n\}$ , and a set of input datasets  $\{D_1, D_2, ..., D_{11}\}$ , the prediction process using symbolic regression can be described as follows.

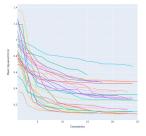
Algorithm 1 Prediction of Environmental Parameters Using SR and Multiple Datasets

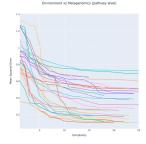
- 1: for each  $y_i \in E$  do
- 2: Select a dataset  $D_j$  from  $\{D_1, D_2, \dots, D_{11}\}$
- 3: Use  $D_j$  and PySR to predict  $y_i$  by inferring the function  $f_{ij}$  that best fits the available data.

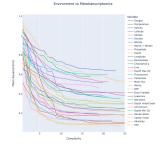
4: end for



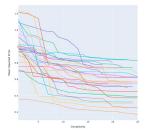
Environment vs Metagenomics

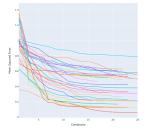






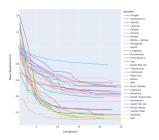
Environment vs Domain

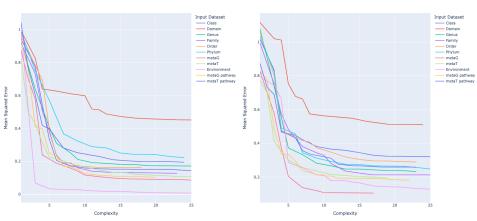




Environment vs Family

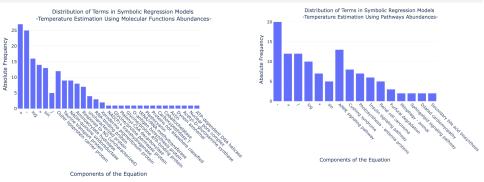
Environment vs Genus

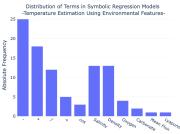




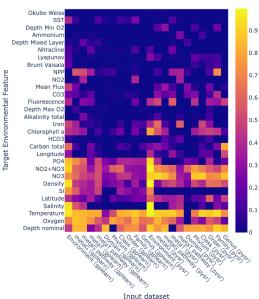
Predicting Temperature

Predicting Oxygen



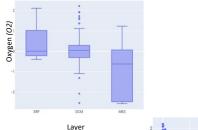


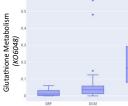
#### Components of the Equation



Symbolic Regressions Models performance  $(R^2 \text{ Coefficients})$ 

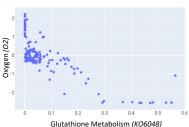
| Target      | Equation*                                                                                                                            | $R^2$ | K00856: adenosine kinase.              |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------|
| Depth       | $\frac{\texttt{K15635}}{\left(\frac{\texttt{K00524}}{\sin(\texttt{K15635}+\log(\texttt{K07798}))}+\texttt{K16845}\right)}-0.50$      | 0.75  | K11927: ATP-dependent RNA<br>helicase. |
| Oxygen      | 7.13 · K00856 - 7.13 · K06048 + K11927                                                                                               | 0.83  | K06048: glutamate-cysteine             |
| Temperature | $K00339 - 4.51 \cdot K15551 + sin(log(K03634))$                                                                                      | 0.90  | ligase carboxylate-amine               |
| Nitrate     | $-K02037 + \frac{K04069}{\left(K00305 - \frac{K18477}{(K18459 \cdot (-0.14 \cdot K00392 + K05934))}\right)} + \frac{K10464}{K00055}$ | 0.93  | ligase,                                |





Layer

MES

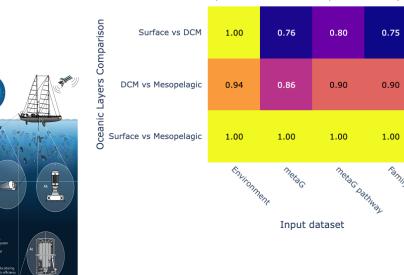


## Predicting environmental conditions from plankton features

| Target      | Equation*                                                                                                          | $R^2$ |
|-------------|--------------------------------------------------------------------------------------------------------------------|-------|
| Depth       | $(-\mathbf{Chl} \cdot (\mathbf{NO3} + 1.05) + \sin(\mathbf{N})) \cdot \cos(\mathbf{NPP} \cdot \mathbf{O2} - 0.34)$ | 0.89  |
| Oxygen      | $-1.23 \cdot \mathbf{NO3} \cdot \cos(0.80 \cdot \mathbf{L}) - \mathbf{T}$                                          | 0.66  |
| Temperature | $-0.92 \cdot \mathbf{D} + 0.81 \cdot \mathbf{S} + 0.19 \cdot \cos(1.22 \cdot \mathbf{D} - 1.88 \cdot \mathbf{S})$  | 0.99  |
| Nitrate     | $0.08 \cdot \mathbf{L} + \mathbf{N} - 0.01 \cdot (0.74 - \mathbf{I}) / \mathbf{Si}$                                | 0.91  |

Chl: Chlorophyll A,NO3: Nitrate,N: Nitrite plus nitrate,NPP: Net Primary Production,L: Latitude,T:Temperature,D: Density,S: Salinity,I: Iron,Si: Silicate.

## Predicting environmental conditions from plankton features



#### Symbolic classifications performance (F1)

Sunagawa et al. (2020)

A

DCM

ИES

-900 m-

Baber Contraction Contraction

### Understanding plankton communities using AI & ML

Can the properties of water be inferred from the taxonomic and functional composition of plankton communities?

Is it feasible to infer the composition of plankton communities from the properties of water?

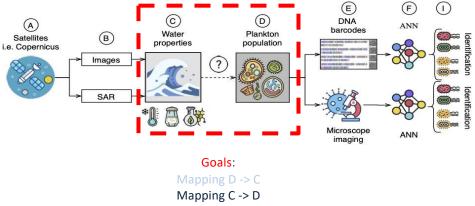
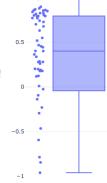


Image by Luis Martí

#### Using environmental features to predict directly key metagenomic features

#### 61 Molecular Functions

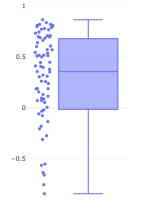
#### (from metagenomic dataset)



| K05724 | 0.9868 | 5.4993143e-6/(lron5m - 0.94)                                            |  |  |
|--------|--------|-------------------------------------------------------------------------|--|--|
| K00275 | 0.8970 | -0.072*DepthN - 0.072*PO4 + 0.072*Temp + 0.851                          |  |  |
| K11927 | 0.8796 | 0.173*ChlorophyllA - 0.173*Temp + 0.173*sin(O2) + 0.307                 |  |  |
| K15551 | 0.8693 | -0.021*DepthN - 0.071*Temp + 0.1127                                     |  |  |
| K03433 | 0.8610 | 0.333*log(DepthN + 1.612)                                               |  |  |
| K02037 | 0.8584 | (0.0457*lron5m + 0.200)/(PO4 + 1.156)                                   |  |  |
| K15635 | 0.8553 | 0.202*log(DepthN + 1.570)                                               |  |  |
| K03163 | 0.8489 | DepthN*(0.075 - 0.0186*Longit) + 0.0435                                 |  |  |
| K07574 | 0.8394 | -0.062*Temp + 0.062*sin(Latit*(-CarbonT + ChlorophyllA - Latit)) + 0.09 |  |  |
| K02533 | 0.8270 | 0.093*Temp + 0.297                                                      |  |  |
| K13525 | 0.8264 | 0.470*log(DepthN + 1.654)                                               |  |  |
| K05501 | 0.8166 | 0.030*ChlorophyllA + 0.030*O2 + 0.108                                   |  |  |
| K05934 | 0.8053 | 0.061*DepthN + 0.061*sin(DepthN) + 0.0619                               |  |  |
| K00324 | 0.8007 | 0.216*Temp + 1.201                                                      |  |  |
|        |        |                                                                         |  |  |

Using environmental features to predict directly key metagenomic features

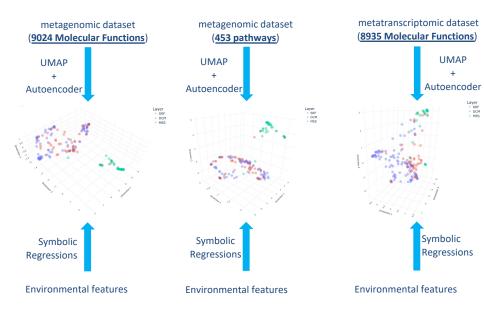
#### <u>79 Pathways</u> (from metagenomic dataset)

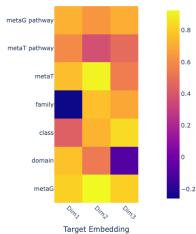


| Glycine, serine and threonine metabolism | 0.865 | ChlorophyllA - Temp + 25.171            |
|------------------------------------------|-------|-----------------------------------------|
| Retinol metabolism                       | 0.838 | 0.126*DepthN - 0.126*Temp + 0.470       |
| Leishmaniasis                            | 0.821 | 0.089*DepthN + 0.104                    |
| Phenylalanine<br>metabolism              | 0.820 | 0.536*ChlorophyllA - 0.536*Temp + 6.649 |
| Fanconi anemia<br>pathway                | 0.811 | 0.181*DepthN + 0.195                    |
| Basal transcription<br>factors           | 0.810 | log(DepthN + 1.800)                     |
| Mitophagy                                | 0.805 | 0.145*DepthN - 0.145*Temp + 0.979       |

ß

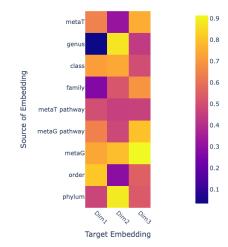
-1





#### SR models predicting euclidean embedding





## Conclusion

- After reducing the dimensionality of each of the datasets and visualizing general patterns, the influence of polarity and the depth at which the sample was taken stand out. Categories such as provinces or oceans only group samples when they come from the surface.
- There is a subset of environmental variables that are consistently predicted by omics data, reflecting their potential regulation.
- Similarly, there is a subset of omics-origin variables that are predicted with high performance, also indicating potential mechanisms of gene expression regulation based on environmental factors.
- Depending on the layers analyzed, differences may focus on the use of antibiotics in surface layers, or on processes related to protein folding or proteostasis when compared with deeper layers.

#### Acknowledgements

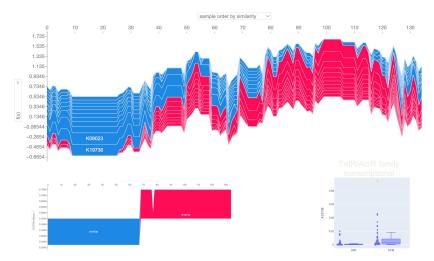


Joint work with Nahuel Pilquinao, José Vásques, Luis Martí, Nayat Sánchez-Pi.

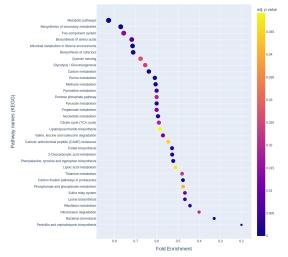


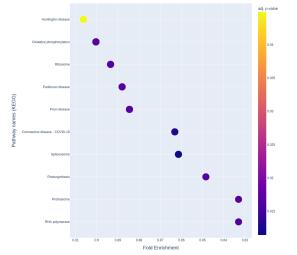
# Thank you! Obrigado! Merci ! iGracias! https://inria.cl

#### (Metagenomic) Layers Characterizacion: SRF vs DCM (5 vs 55 m depth)



#### (Metagenomic) Layers Characterizacion: SRF vs DCM (5 vs 55 m depth)





#### (Metagenomic) Layers Characterizacion: SRF vs MES (5 vs 500 m depth)