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Abstract
Researchers typically resort to numerical methods
to understand and predict ocean dynamics, a key
task in mastering environmental phenomena. Such
methods may not be suitable in scenarios where the
topographic map is complex, knowledge about the
underlying processes is incomplete, or the applica-
tion is time critical. On the other hand, if ocean
dynamics are observed, they can be exploited by
recent machine learning methods. In this paper we
describe a data-driven method to predict environ-
mental variables such as current velocity and sea
surface height in the region of Santos-Sao Vicente-
Bertioga Estuarine System in the southeastern coast
of Brazil. Our model exploits both temporal and
spatial inductive biases by joining state-of-the-art
sequence models (LSTM and Transformers) and
relational models (Graph Neural Networks) in an
end-to-end framework that learns both the tem-
poral features and the spatial relationship shared
among observation sites. We compare our results
with the Santos Operational Forecasting System
(SOFS). Experiments show that better results are
attained by our model, while maintaining flexibil-
ity and little domain knowledge dependency.

1 Introduction
Machine Learning (ML) has shown promising results in many
fields, not only as an applied tool but also as a main driver
of scientific discovery [Raccuglia et al., 2016; Cranmer et
al., 2020; Jumper et al., 2021]. If in the past environmen-
tal models were governed by first-principle models based on
established science, it is now clear that this is not the ideal ap-
proach in a handful of situations. There are domains in which
the underlying phenomena and the governing equations are
not well understood or the complexity of the problem is enor-
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mous, making it unfeasible in practice to solve them through
first-principle models.

One such domain is the oceanic one. Being able to un-
derstand and predict how the ocean dynamics works is a
major concern for coastal countries both economically and
socially. Techniques have been proposed so as to model
ocean dynamics numerically [Blumberg and Mellor, 1987;
Ribeiro et al., 2019; Costa et al., 2020]. The goal is often
to anticipate extreme phenomena, for instance storm surges,
which can cause transportation delays and accidents, when
forecasting current velocity and sea surface height. However,
as stated before, physical models are costly to design, imple-
ment, and maintain, given that they require accurate measure-
ments of the region of interest topology for spatial represen-
tations and for boundaries conditions.

Conversely, ML models have been successfully applied
to a variety of physical problems [Xu and Valocchi, 2015;
Sanchez-Gonzalez et al., 2020; Lira et al., 2022] and in par-
ticular in the oceanic domain [Ibarra-Berastegi et al., 2015;
Xiao et al., 2019; Netto et al., 2020]. These models circum-
vent the computational cost of physical models while attain-
ing excellent results. As measurement tools have improved,
both public and private interest to record oceanic data has
risen in recent years [PIANC MarCom, 2012]. One can ex-
plore ML models with such historical data, aiming to im-
plement and deploy better ocean dynamics prediction sys-
tems. However, as sensors and measurement tools are “in
the wild”, the observation of hydrodynamic and meteorolog-
ical variables are highly affected, for instance, by extreme
or unexpected environmental conditions or technical glitches.
So, key variables for ocean dynamics, such as current and
wind velocity and sea surface height, tend to display noisy
and missing data.

In order to build a data-driven model that deals with those
constraints, specially missing data and diverse kinds of time
series, a variety of ML models have been proposed. Se-
quence models like LSTM and Transformers [Hochreiter and
Schmidhuber, 1997; Vaswani et al., 2017] and Graph Neural
Networks (GNNs) [Scarselli et al., 2009] are suitable for this
task as they incorporate both temporal and spatial inductive
biases into their architecture.



In this work we aim to address a time series forecast-
ing problem in the context of ocean dynamics, proposing a
spatio-temporal GNN architecture to predict current veloc-
ity and sea surface height, and using multivariate time series
data collected at the Santos-Sao Vicente-Bertioga Estuarine
System. Forecasting oceanic variables is a major concern, in
general, for both public actors and private port authorities,
and it is even more in that area, which is home to the largest
port in Latin America, the Port of Santos.

We summarize the main contributions of this work as fol-
lows:

• We propose a general model capable of dealing with
problems that have both temporal and spatial dimensions
and significant levels of missing data.

• We address a real problem in the context of physical sci-
ences, using a data-driven method rather than physical
model-based simulations.

• We demonstrate experimentally that the proposed model
surpasses the physical model SOFS, our baseline, by
27% on water current speed prediction and 14% on wa-
ter current direction prediction, while maintaining ex-
cellent performance in forecasting sea surface height,
considering the Willmott index [Willmott, 1981], also
known as the Index of Agreement (IoA).

Regarding the structure of the paper, we introduce in Sec-
tion 2 previous works related to machine learning models in
the context of relational learning, multivariate time series pre-
diction and ocean domain. After, in Section 3 we describe
the basic concepts and the problem we address, while in Sec-
tion 4 we use that theory to model our problem. In Section 5
we detail our architecture. Sections 6 and 7 close the paper
reporting our experimental setup, the obtained results and dis-
cussions, conclusions and planned future work.

2 Related Work
In an effort to address all dimensions in which our problem
is embedded, we quickly highlight the most recent research
that develops new methods for forecasting multivariate time
series in the oceanic domain, where temporal and spatial bi-
ases matter and data-driven methods produce better results. A
number of statistical methods have been proposed to address
these kinds of problems. Wei (2019) presents in an intuitive
and comprehensive way a handful of those methods, like au-
toregressive integrated moving-average for the case of multi-
variate time series data, applying them, for example, to real
public health problems. Nonetheless, these statistical models
are known to face difficulties in capturing long-term relations
and seasonal components.

Due to their flexibility, ML models have shown excellent
results in multivariate time series forecasting. For exam-
ple, simple models like Quantile Regression Forests (QRF)
were used in [Moreno et al., 2022] to mitigate the error of a
physics-based numerical model, built to forecast the surface
current of an ocean region. The authors proposed a differ-
ent and flexible framework that models the problem from the
“backdoor”: they exploit the existence of a physical model

and build one that models the residual error between the for-
mer and the surface current true value.

Recent works have been focused on applying deep learn-
ing models or implementing their own, due to both the im-
pressive performance in a variety of tasks and the capability
of incorporating domain specific knowledge into those mod-
els’ architecture. For instance, in [Ziat et al., 2017] the au-
thors proposed a spatio-temporal Recurrent Neural Network
(RNN) model for time series forecasting, combining a se-
quential model with the dependence between time series of
locations spatially separated. In the field of application of this
work, others have even proposed the combination of state-of-
the-art models like Convolutional Neural Networks (CNN)
and RNN, building spatio-temporal time series models that
benefit from both inductive biases [Xiao et al., 2019].

In order to better model relationships between entities of a
problem, Graph Neural Networks (GNN) showed promising
results and well-established theory to do so. Lira et al. (2022)
address the time series problem of frost forecasting, using
GNNs with attention to model an experimental site spatially
and temporally. In [Cao et al., 2020], the authors compose
both convolution and sequential learning in a relational ar-
chitecture (GNN), extracting richer features in the frequency
domain through Fourier Transform, aiming to model multi-
variate time series forecasting problems. Specifically to the
ocean domain, [Netto et al., 2020] propose an application of
GNNs to model ocean variables in the form of time series, in
a real problem of an economically important coastal region,
similarly to [Lira et al., 2022].

3 Background
In this section we outline the main ideas behind modeling
time series as a graph and GNNs (Subsection 3.1), and the
problem we address in this work (Subsection 3.2).

3.1 Dynamic Graph Neural Networks
Our work adopts terminology by [Kazemi et al., 2020]
in which a continuous-time dynamic graph (CTDG)
is a pair (G,O) where G is a (static) initial graph
and O is a set of observations/events of the form
(event type, event, timestamp) that can alter graph struc-
ture, node attributes, and edge attributes.

Each static graph is defined by a pair of sets (V, E). V is a
set of nodes and E is a set of edges. Following the structure
proposed by [Satorras et al., 2022], we work with a fully con-
nected graph. A discrete-time dynamic graph (DTDG) can be
defined as a set of snapshots {G1,G2, . . . ,GT } sampled from
an underlying CTDG.

Finally, a Graph Neural Network [Scarselli et al., 2009]
can be described as message passing mechanism which iter-
actively updates nodes’ hidden representations. This mecha-
nism can be summarized as follows:
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where x
(k)
i is the hidden representation (or node features) of

a node i at iteration k, ϕ(k) is a differentiable message func-
tion that constructs a message to be propagated based on both



sender (xj) and receiver (xi) nodes, □ denotes a differen-
tiable, permutation invariant aggregation function that aggre-
gates all messages from neighbour nodes and γ(k) is a dif-
ferentiable update function, that updates the node’s hidden
representation.

Both ϕ and γ are parametrized by a set of learnable param-
eters that are iteratively updated during the training process.
Examples of such functions would be Multi Layer Percep-
trons (MLPs).

3.2 The SSVBES Forecasting Problem
The Santos-Sao Vicente-Bertioga Estuarine System
(SSVBES) is located on the southeast coast of Brazil,
as part of the South Brazil Bight. This estuarine system, like
others over the world, has its hydrodynamics driven mainly
by three forcing processes, which are the astronomical tide,
meteorological tide and river discharge. The meteorological
tide is dependent on the synoptic winds that blow over the
adjacent continental shelf, associated with simple Ekman
dynamics and, therefore, is a process that occurs off the
Santos Bay and enters it as a gravity wave. When winds blow
from North-Northeast, sea surface height (SSH) decreases
and, when winds from South-Southwest are dominant, SSH
increases. We present that region in Figure 1 as well as
its three main channels, Sao Vicente Channel, Santos Port
Channel, and Bertioga Channel, that constitute the estuarine
system.

An effort to understand the SSVBES behavior under the ac-
tion of these forcings has been coded into the Santos Opera-
tional Forecasting System (SOFS) [Costa et al., 2020], which
provides daily forecasts for the region. SOFS adopts a finite
difference model that uses the Navier-Stokes equation with
sigma vertical coordinates, is forced by the winds, tides, den-
sity gradients and river discharge, with good results for both
SSH and currents.

However, data availability of river discharge limits the ac-
curacy outputs of this model because this is not a variable
easily obtained in a near-real time frame. This limitation is
mainly observed in current results, as river discharge in estu-
aries causes changes in flow, directly, and in vertical density
stratification, which is also capable of changing currents.

4 Modeling SSVBES with DTDGs
We model SSVBES as a DTDG comprised of snapshots sam-
pled from an underlying CTDG. Each node in this CTDG is
a pair (type, location) denoting a node type and a location.
Possible node types are oceanic variables such as SSH, wa-
ter current, and wind. Each different type has ktype features
of which ltype are labels. Possible locations are measuring
stations in the SSVBES system from which data is collected.
For this region, we have access to observations in six different
sites located as indicated in Figure 2.

Each data point collected is an event associated with the
node (type, location). For example, a measurement from a
water current velocity sensor in Praticagem station – located
in the observation site 5 – is considered an event associated
with the node (current, praticagem).

4.1 Sampling the CTDG

To build a snapshot of the CTDG associated with an instant t
we use the following procedure:

1. Define a past window time interval (past len) and filter
events having timestamp ∈ [t− past len, t[.

2. Define a future/prediction window time in-
terval (future len) and filter events having
timestamp ∈ [t, t+ future len[.

3. A node xi associated with the pair (type, location) is
part of the snapshot if the past window has at least one
event associated with that pair.

4. Each node xi associated with the pair (type, location)
is built with three time-sorted sequences of events:

• x
(past)
i ∈ Rpsi×ktype : sequence with psi past

events;

• x
(future)
i ∈ Rfsi×(ktype−ltype): sequence with fsi

future events without label columns;
• yi ∈ Rfsi×ltype : sequence with fsi future events

with only label columns.

The future features sequence x(future)
i stores only features

that are associated to future events but whose values are avail-
able beforehand such as astronomical tide and timestamp en-
coding columns.

Note that psi and fsi may vary for each node xi depending
on its data collection periodicity and eventual missing data
points (e.g. sensor outage).

To build the complete DTDG graph G =
{G1,G2, . . . ,GN} we sample N uniformly spaced snapshots
from the underlying CTDG.

4.2 Encoder-Decoder modeling

Following the definition from [Kazemi et al., 2020], an en-
coder receives a dynamic graph as input and outputs an em-
bedding function, while a decoder receives an embedding
function as input and performs a forecasting task.

Our forecast model is comprised of
two sets: a set of encoders Enc =
{Enctype1 , Enctype2 , . . . , EnctypeE}, and a set of de-
coders Dec = {Dectype1 , Dectype2 , . . . , DectypeE},
where E represents the number of oceanic variables being
processed.

Each encoder Enctype is comprised of two modules,
namely, a temporal encoder and a GNN for information prop-
agation between nodes. While the temporal encoder is dif-
ferent for each type, the GNN module is shared amongst all
nodes.

The temporal encoder receives x
(past)
i and x

(future)
i as

input and outputs a single fixed size hidden representation hi.

The GNN updates all hi based on graph neighbourhood as
detailed by (1), enabling information from different nodes to
be shared.
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Figure 1: The Santos-Sao Vicente-Bertioga Estuarine System. In the bottom figure, the main locations: 1 - Sao Vicente Channel; 2 - Santos
Port Channel; 3 - Bertioga Channel.

The decoder receives hi as input and outputs a forecast ŷi
for a subset of V .

This setup enables, for example, the sea surface height and
water current nodes to have different temporal encoders and
decoders that may have different architectures. This flexi-
ble approach can be adapted to a vastly different set of input
variables, as any time series can be encoded into a node rep-
resentation and have its information propagated through the
graph structure.

5 Proposed Architecture
We propose a modularized architecture, shown in Figure 3,
that fits in the encoder-decoder category, thus enabling the
use of different sequence processing architectures for encod-
ing and decoding of each different oceanic variable. Also,
we separate the concept of a GNN Block from its inner GNN
Convolution object allowing it to be replaced by newer graph
convolution architectures while still maintaining normaliza-
tion layers and skip connections. In this section we describe
each one of these components.

5.1 Encoders
Each Enctype encoder receives two sequences of variable
length and outputs a single hidden representation hi of fixed
length embed size.

Temporal Encoding
We implement the temporal encoder described in Section 4.2
with two different sequence models, namely a Transformer
and an LSTM, and compare results. Both models can be de-
scribed as:

ξ : Rpsi×ktype × Rfsi×(ktype−ltype) → Rembed size.

In both cases, we use two instances of the same architecture to
encode both x

(past)
i and x

(future)
i . To form the final fixed size

embedding, we concatenate the results into a single vector
hi = [h

(past)
i , h

(future)
i ].

Spatial Encoding
Given the fixed sized embedding hi we use a GNN block
to update the embedding with information from incoming
edges. The GNN block is described as:

G : Rembed size → Rembed size.

Inspired by [He et al., 2016] we establish a block with a skip
connection and normalization layers as depicted in Figure 3.

Each GNN block contains graph convolutions that are re-
sponsible for aggregating neighbourhood information. Our
implementation uses a Graph Attention Convolution, first
proposed by [Veličković et al., 2018] and then further im-
proved by [Brody et al., 2021].



1

2
3

4

5
6

Figure 2: Santos-Sao Vicente-Bertioga Estuarine System, and the
location of all six observation sites used in the experiments: 1)
TIPLAM, 2) Alemoa, 3) Ilha Barnabé, 4) CPSP, 5) Praticagem, 6)
Palmas.

5.2 Decoders
Each Dectype decoder receives a single hidden representa-
tion hi of fixed length embed size as input and outputs a se-
quences of length fsi. Our implementation uses two different
decoder architectures. A Fixed Output Size MLP is employed
to decode water current velocity data of the form:

Dfix : Rembed size → Rmax(fsi)×ltype .

We call this architecture a fixed output size one, because
max(fsi) is the maximum length of the output sequence and
is defined beforehand based on training data. To decode sea
surface height related data, we employ a Dynamic Output Size
MLP that can be viewed as:

Ddyn : Rembed size+embed size/2 → Rltype .

In this architecture, the decoder also receives h(future)
i as in-

put and concatenates it to the embedding hi to form the final
input to the MLP. This format resulted in much better results
for SSH forecast.

We hypothesize that this is due to the fact that h(future)
i for

type = SSH contains astronomical tide information which
is the major factor defining SSH behaviour. The model seems
to benefit from receiving this information directly in the de-
coder. We leave a more detailed study of this behaviour to
future work.

6 Experimental Setup
Here we describe our datasets and its characteristics (Subsec-
tion 6.1), the model configurations and the stack of tools used
to implement and run our experiments (Subsection 6.3), and
our experimental design (Subsections 6.2 and 6.4)

6.1 Datasets
As input to the model, we used environmental sensing
data collected from the 6 regions of the SSVBES between
1/1/2019 and 1/9/2021 (totaling 974 days).

As the sensors responsible for data acquisition are directly
affected by climate and environmental conditions, the input
features presents the following percentage of missing data:
Current: 24.3%, SSH: 42.1% and Wind: 84.1%, totaling ap-
proximately 50.1% missing data from the sensing date range.
The data are also unbalanced as to the percentage of data ob-
tained in the different locations, as seen in Figure 4.

The monitoring data was aggregated using a 30-minute
step between windows, which means there are 3 graphs G
in the flow data for each hour. In addition, data inputs are
normalized by Z-score.

To deal with the characteristics of the available data, the
proposed graph model does not need strict input shape or
contiguous data. Each node of the model structure receives
an independent data window as input after available features
data encoding.

6.2 Scenarios
To assess our model performance, we designed 4 experimen-
tal scenarios.

Water Current and SSH Forecasting In the first two ex-
periments we evaluated the performance of the proposed
model in predicting the current velocity and sea surface
height, separately. We compared these results to SOFS. We
used the same set of hyperparameters to train both models.

Fully Connected vs Same-variable vs Disconnected Graph
Next, we experimented and compared three graph topologies:
a fully connected graph, a graph with connections only be-
tween nodes of the same type and a fully disconnected graph.
Analogously to the previous experiment, all hyperparameters
were fixed and we only modified our adjacency matrix.

LSTM vs Transformers as Temporal Encoders Lastly,
given our framework flexibility, we compared different
state-of-the-art sequence models as temporal encoders. For
that experiment, we contrasted the results with an LSTM
against Transformers as encoders, keeping the same set of
hyperparameters for both cases.
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Figure 4: Distribution of missing values for different event types
from the SSVBES observation sites.

We tested for each scenario a set of combinations of target
variables, which are current velocity and SSH. In the first and
second experiments (respectively, predicting current velocity
and sea surface height), we fed as input to our model (i) only
the corresponding target variable and (ii) both, to predict the
corresponding target variable. In the last two experiments we
used the 4 possible combinations of input variables. Table 1
summarizes this combination for input and target variables.

For all experiments we optimized our models with respect
to the IoA [Willmott, 1981]. Hence, our loss function is de-

Scenarios Inputs Targets
1st Experiment [Current; Current+SSH; Current+SSH+Wind] [Current]
2nd Experiment [SSH; Current+SSH] [SSH]
3rd Experiment [Current+SSH] [Current]
4th Experiment [Current; SSH; Current+SSH] [Current; SSH]

Table 1: Inputs and target variables for each experimental scenario
we designed.

fined as:

L(ŷi, yi) = 1− IoA = 1−
∑N

n=1(yi−ŷi)∑N
n=1(|ŷi−ȳi|+|yi−ȳi|)2

(2)

We also present results for Root-Mean-Squared Error
(RMSE) in meters per second, and degrees.

6.3 Model configurations
For experiments, we used well-known frameworks like Py-
torch and Pytorch Geometric [Paszke et al., 2019; Fey and
Lenssen, 2019] to implement the model, and Weights&Biases
[Biewald, 2020] to track all experiments.

We used an LSTM as temporal encoder with 1 layer and
a hidden dimension (embed size) of size 20, and 2 GNN
blocks with GATv2 [Brody et al., 2021] as GNN convolu-
tion. The only exception is the Transformers experiments,
where we used 3 layers of Transformer Encoder with 5 atten-
tion heads, the same hidden dimension size and numbers of
GNN blocks, but with a less complex message passage GNN
convolution in contrast to GATv2, due to overfitting issues
during training.



We ran each experiment with 10 different seeds. We here
report the average performance of these 10 runs. Again, the
exception is the Transformers experiments, which we ran for
the best 5 seeds used with the LSTM as temporal encoder and
report the average performance for these 5 runs.

The results for the first and the second experiments are re-
ported in Table 2 and Table 3. The third experiment is re-
ported in Table 4, while the last experiment is reported in
Table 5 and Table 6.

6.4 Discussion
Table 2 shows that our model surpasses SOFS in all scenar-
ios by more than 17% and 8% for water current speed and
direction respectively. This represents a considerable leap
in quality of prediction that can be better visualized in Fig-
ure 5. While results for all scenarios consistently showed
that adding graph connectivity can benefit the model’s per-
formance, most improvement is still observed with a single
variable as input. This result indicate that the temporal en-
coder is the major component in this gain. Further indication
of this can be found in Table 5 in which utilizing a Trans-
former architecture instead of an LSTM performed even bet-
ter, surpassing SOFS by more than 27% and 14% for water
current speed and direction, respectively.

Nevertheless, both Tables 2 and 5 show relevant gains to
water velocity predictions when SSH nodes are added to G.
This shows that our model is able to aggregate information
from SSH nodes into water current nodes’ representation.
SSH results in Table 3 and 6 did not benefit from the addi-
tion of current velocity data, but it is important to consider
that SSH modeling in SOFS is already highly accurate and
may present fewer opportunities of improvement.

Another important effect to note is that adding nodes can
decrease the model’s performance. A small indication of this
effect can be seen by a slight decrease in IoA when wind data
is added. More directly, by analysing Table 4 it is possible to
note that a fully disconnected architecture performs slightly
better than a graph with only nodes of the same type con-
nected in the case of water current velocity modeling. This
indicates that aggregating current velocity data from other ob-
servation sites did not benefit our model’s accuracy.

This effect may be related to both over-squashing [Alon
and Yahav, 2021; Topping et al., 2021] of node embeddings
and to the fact that our model uses a homogeneous GNN
model in which functions ϕ and γ from expression (1) are the
same for all types. Heterogeneous GNN models [Zhang et
al., 2019] have been demonstrated to perform well in scenar-
ios with multiple node and edge types and constitute a future
research direction for our work.

7 Conclusion
We presented a real problem whose structure benefits from
a Graph Neural Network modeling strategy that encodes
spatio-temporal features and their relations. Our experiments
show the feasibility of a data-driven model capable of han-
dling real datasets with missing data and able to incorporate
and share multivariate time series information between prob-
lem entities that are spatially separated. Furthermore, our

Speed (m/s) Direction (degrees)
Scenarios IoA ↑ RMSE ↓ IoA ↑ RMSE ↓
SOFS 0.599 0.178 0.755 85.18
Current 0.706 0.165 0.818 70.25
Current+SSH 0.726 0.158 0.842 65.68
Current+SSH+Wind 0.718 0.160 0.843 65.29

Table 2: Average results for 10 random seeds using data from
all measuring stations to forecast Praticagem station water current
speed and direction. In bold the best ones.

SSH (m)
Scenarios IoA ↑ RMSE ↓
SOFS 0.935 0.133
SSH 0.940 0.124
Current+SSH 0.939 0.123

Table 3: Average results for 10 random seeds using data from all
measuring stations to forecast Praticagem SSH. In bold the best
ones.

model has better performance when compared with physics-
based models for the task of forecasting oceanic variables.

In future work, we intend to look into the following direc-
tions:

Latent graph inference: When learning on graphs, one
must assume the structure (topology) of the graph a priori.
However, any such hypothesis may be wrong; in large graph
scenarios we end up with an enormous combinatorial prob-
lem. So, schemes such as advanced by [Kazi et al., 2022] of-
fer a promising direction to address larger graphs that may in-
clude data from other meteorological stations near SSVBES,
increasing the number of nodes to hundreds or even thou-
sands, while we learn the nodes connectivity on training.

Heterogeneous GNNs: Our experiments suggest that dis-
tinct oceanic variables have different levels of influence in
forecasting the underlying target variables. Thus, we must
search for interesting ways to handle heterogeneous graphs,
where the nodes may be of different types, such as in
[Schlichtkrull et al., 2018]. The heterogeneous setup may al-
low for different message functions to be learned for different
types of relations.

Using SOFS as input: SOFS considers other types of infor-
mation such as local topology; using that as a targetless node

Speed (m/s) Direction (degrees)
Scenarios IoA ↑ RMSE ↓ IoA ↑ RMSE ↓
Fully disconnected 0.719 0.161 0.830 68.89
Same type connections 0.706 0.165 0.818 70.25
Fully connected 0.726 0.158 0.842 65.68

Table 4: Average results for 10 random seeds comparing fully dis-
connected, same-variable connected and fully connected graphs in
the [Current;SSH] predicting [Current] scenario. In bold the best
ones.



Speed (m/s) Direction (degrees)
IoA IoA

Scenarios Transformer LSTM Transformer LSTM

Current 0.734 0.706 0.841 0.818
Current+SSH 0.762 0.726 0.860 0.842

Table 5: Comparison of results for different time series encoders.
In these experiments we used a Transformer, a state-of-the-art se-
quence model, as our first encoders, and compare its results with the
previous ones, where we used an LSTM instead. Given the compu-
tational cost of Transformers, we used, for each input experiment,
the 5 random seeds that gave the best results using LSTM as en-
coder, and averaged them. We used the same data as the previous
experiments to forecast the speed and direction of the water current
at Praticagem. In bold the best ones.

SSH (m)
IoA

Scenarios Transformer LSTM

SSH 0.932 0.940
Current+SSH 0.939 0.939

Table 6: Comparison of results for different time series encoders.
Same experimental design as showed in Table 5, except that we used
SSH as solo input in one experiment, and we forecast the SSH at
Praticagem.

in the DTDG model may improve the performance even fur-
ther. Recent proposals point in that direction within Physics-
Informed Machine Learning (PIML) [Willard et al., 2020].
Temporal Graph Networks: The proposals by [Rossi et
al., 2020] may also be investigated to encode temporal re-
lationships between nodes, thus eliminating the need for the
sampling process to form a DTDG.
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José Chambel Leitão, and Paulo Chambel Leitão. First
Approach of a Storm Surge Early Warning System for
Santos Region, pages 135–157. Springer International
Publishing, Cham, 2019. (cit. on p. 1)

[Rossi et al., 2020] Emanuele Rossi, Ben Chamberlain, Fab-
rizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal Graph Networks for Deep Learning
on Dynamic Graphs. arXiv:2006.10637 [cs, stat], October
2020. (cit. on p. 8)

[Sanchez-Gonzalez et al., 2020] Alvaro Sanchez-Gonzalez,
Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec,
and Peter Battaglia. Learning to simulate complex physics
with graph networks. In International Conference on Ma-
chine Learning, pages 8459–8468. PMLR, 2020. (cit. on
p. 1)

[Satorras et al., 2022] Victor Garcia Satorras, Syama Sundar
Rangapuram, and Tim Januschowski. Multivariate Time
Series Forecasting with Latent Graph Inference, March
2022. (cit. on p. 2)

[Scarselli et al., 2009] F. Scarselli, M. Gori, Ah Chung Tsoi,
M. Hagenbuchner, and G. Monfardini. The Graph Neural



Network Model. IEEE Transactions on Neural Networks,
20(1):61–80, January 2009. (cit. on p. 1, 2)

[Schlichtkrull et al., 2018] Michael Schlichtkrull,
Thomas N. Kipf, Peter Bloem, Rianne van den Berg,
Ivan Titov, and Max Welling. Modeling Relational
Data with Graph Convolutional Networks. In Aldo
Gangemi, Roberto Navigli, Maria-Esther Vidal, Pascal
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rull, Arantxa Casanova, Adriana Romero, Pietro Liò,
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