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ABSTRACT

To improve the physical understanding and the predictions of complex dynamic
systems, such as ocean dynamics and weather predictions, it is of paramount inter-
est to identify interpretable models from coarsely and off-grid sampled observa-
tions. In this work we investigate how deep learning can improve model discovery
of partial differential equations when the spacing between sensors is large and the
samples are not placed on a grid. We show how leveraging physics informed
neural network interpolation and automatic differentiation, allow to better fit the
data and its spatiotemporal derivatives, compared to more classic spline interpo-
lation and numerical differentiation techniques. As a result, deep learning based
model discovery allows to recover the underlying equations, even when sensors
are placed further apart than the data’s characteristic length scale and in the pres-
ence of high noise levels. We illustrate our claims on both synthetic and exper-
imental data sets where combinations of physical processes such as (non)-linear
advection, reaction and diffusion are correctly identified.

1 INTRODUCTION

Mathematical models are central in modelling complex dynamical processes such as climate change,
the spread of an epidemic or to design aircrafts. To derive such models, conservation laws, physical
principles and phenomenological behaviors are key. However, some systems are too complex to
model with a purely bottom up approach |Bolton & Zannal (2019); Sanchez-P1i et al.| (2020). When
observational data is present, automated model discovery tools are becoming increasingly more
useful to derive partial differential equations directly from the data. The classical method for data
driven model discovery is to apply sparse regression on a set of pre-selected features, the so-called
library. In the case of partial differential equations, this library is constructed from a set of (higher)-
order spatial derivatives. Model discovery is thus effectively a two-step process: first construct the
library, then apply sparse regression. Numerically differentiating the data to construct the library
using finite differences is extremely sensitive to noise; in practice, usually splines are fitted first and
then differentiated. Splines model the data as piece-wise polynomials, but this expansion breaks
down when the spacing between two sensors is large. These methods, which we refer to as classical
methods, thus fundamentally limit model discovery to densely sampled data sets: even when no
noise is present, the error incurred by the numerical differentiation corrupts the library and renders
the sparse regression algorithm useless. The limits of classical interpolation methods have long been
known and are often cited as a reason to use neural networks instead. Automatic differentiation can
then be used to calculate the derivatives Baydin et al.| (2017), resulting in much more accurate
derivatives. Previous works [Long et al.| (2018); Both et al. (2021); [Both & Kusters| (2020) have
shown that using neural networks to create a surrogate of the data allows model discovery in noisy
and small data sets.

In this paper we systematically study how sample spacing influences model discovery and compare
neural-network based interpolation with classical methods. Our focus is the influence of the differ-
entiation method used to construct the (higher-order) derivatives and its impact on model discovery,
in particular when the spacing between two sensors Az is larger than the underlying equations’
characteristic length scale [.. As NN-based model discovery method we use DeepMoD, which is
able to combine NN-based interpolation with any sparse regression method Both et al.|(2021); |Both
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& Kusters| (2020). By using an identical sparse regression algorithm for both the classical method
and DeepMoD, we can isolate the effect of interpolation on the library and the discovered equation.
Our results show that NN-based interpolators, in contrast to classical methods, can recover the un-
derlying equation when Az > [.. Furthermore, we show that NN-based interpolation can succeed
even when Az > [, by either randomly sampling or displacing the sampling grid over time. We
corroborate our findings with experimental data sets of the 2D advection-diffusion equation and the
1D cable equation. In both cases, DeepMoD, discovers the underlying equation in this sparsely
sampled regime, contrarily to classical methods. Our findings solidify the case for deep learning
methods by showing that they succeed in a regime where classical methods fundamentally fail.

2 RELATED WORKS

Sensor placement There exists a vast literature on determining optimal sensor placement for con-
trol theory or signal reconstruction based on a library of features, emphasizing the importance of
sampling in the limit of sparse data|Brunton et al.|(2013);/Manohar et al.|(2018)); Wang et al.|(2019).
While many of these sampling strategies have been developed to either reconstruct multi-scale data-
sets (Champion et al.|(2019b), flow-fields [Brunton et al.| (2015)); Loiseau et al.|(2017)) or other physi-
cal properties of a system Schaeffer et al.| (2018)), research on the exact role of spatial and temporal
sensor density or distribution for model discovery has received limited attention.

Sparse regression-based model discovery Using sparse regression to discover differential equa-
tions was popularized by algorithms such as SINDY |Brunton et al.| (2016)) and PDE-find |[Rudy et al.
(2017b) and has received considerable interest for both ODEs Mangan et al.| (2017); [Messenger
& Bortz| (2020) as well as for PDEs [Rudy et al.| (2017a); [Long et al.| (2018)); |Vaddireddy et al.
(2020). These approaches have since been expanded to automated hyper-parameter tuning (Cham-
pion et al.|(2019a)); Maddu et al.| (2019); a Bayesian approach for model discovery using Sparse
Bayesian Learning |Yuan et al.| (2019), model discovery for parametric differential equations Rudy
et al.[(2019).

Deep learning-based model discovery With the advent of Physics Informed Neural Networks
Raissi et al.| (2017aib), a neural network has become one of the prime approaches to create a surro-
gate of the data and perform sparse regression either on the networks prediction [Schaeffer| (2017);
Berg & Nystrom| (2019) or within the loss function of the neural network [Both et al.| (2021)); Both
& Kusters| (2020). Alternatively, Neural ODEs were also used to discover the unknown governing
equation Rackauckas et al.|(2020) from physical data-sets. Different optimisation strategy based on
the method of alternating direction is considered in|Chen et al.| (2020)), and graph based approaches
have been developed recently Seo & Liu/ (2019); Sanchez-Gonzalez et al.| (2018)). Finally,|Cranmer,
et al.| (2020); |Greydanus et al.| (2019) directly encode symmetries in neural networks using respec-
tively the Hamiltonian and Lagrangian framework.

3 METHODS

Sparse regression A popular approach to discover a PDE from a spatio-temporal data set is to
apply sparse regression on a library of candidate terms ©, e.g. solve,

Ut :f(lau7u$7"') :@{, (1)

to obtain the coefficient vector £&. Here u; is the temporal derivative and each column in O is
a candidate term for the underlying equation, typically a combination of polynomial and spatial
derivative functions (e.g. u, u,, uu,). To promote the sparsity of this solution an [; regularization
is added to the problem, leading to the so-called Lasso regression:

¢ =minlu, — 0 £J*+ A1l 6)

Here A controls the strength of the regularization, and hence the resulting level of sparsity. In
this paper we use the Lasso as a sparse regression algorithm, with \ determined by 5-fold cross-

validation. The resulting coefficients are normalized by the /5 norm of the feature vector, §; =
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& - |1©:l|2/||ut]|2 and thresholded. The exact value of the threshold can significantly influence the
resulting equation. We use exactly the same Lasso and threshold for both DeepMoD and the classical
methods so as to eliminate the influence of the exact variable selection algorithm used. Our goal is
to compare how the feature library © and temporal derivative u, as generated by either DeepMoD
or a classical method differ, and its resulting effect on model discovery.

Numerical differentiation The features of the library © consists of (higher-order) derivatives,
which need to be differentiated from the observed data. Numerical differentiation is typically per-
formed either by finite differences or by fitting a spline on the data and subsequently differenti-
ating this spline. Finite difference methods directly operate on the observed data to calculate the
derivative. In this paper, we use a standard second order accurate central difference scheme. Fi-
nite differences is computationally cheap and easy to scale to higher dimensions, but suffers from
sensitivity to noise and requires samples to be closely spaced for accurate results; the truncation
error of the scheme given above scales with the grid sampling, h, as O (h2). In the sparse regime
where Ax — [, higher order schemes will not further improve this method. Furthermore, FD re-
quires samples on the edges of the domain to be discarded, and for small data-sets and higher order
schemes this can become a significant fraction of the total data.

A more accurate and widely used alternative is to fit a spline to the data and differentiate it. When
fitting using splines, the data is approximated by a piece-wise polynomial with enforced continuity
at the edges. Splines yield more accurate results in practice, but do not scale easily to higher dimen-
sions, especially when using splines of higher order. This hinders model discovery, which requires
these higher orders due to the derivatives in the feature library; by using a fifth-order spline to ap-
proximate the data, we effectively approximate the 3rd order derivative with only a second order
polynomial, hence hindering its application to model discovery.

DeepMoD |Both et al.[(2021)); Both & Kusters (2020 is a neural network-based model discovery
algorithm. It uses a neural network to learn both a noiseless surrogate of the data & and a coefficient
vector £ by minimizing,

()i — ©5(€ - g))°. 3)

1

1Y , 1

2 V2
Here © and 4, are calculated by automatic differentiation of the neural network output . ¢ is a
mask which sets the active terms, i.e. the terms that feature in the differential equation. The first
term learns the data mapping (x,t) — 4, while the second term constrains the network to solutions
of the partial differential equation given by 4, © and £ - g. During training, the coefficients £ are
determined by solving the least squares problem corresponding to the second part of eq. [3] The
mask g is updated separately by a sparse regression algorithm. The mask g thus selects which terms
are in the equation, while £ are the coefficients of these active terms. The value of the threshold
can impact the discovered equation. To remove this factor from our comparison, we use exactly the
same method to find the sparse coefficient vector £* for DeepMoD and the classical methods. More
details on DeepMoD can be found in|Both et al.|(2021); |Both & Kusters|(2020).

We emphasize two key differences with classical methods: 1) DeepMoD uses automatic differen-
tiation to calculate ©, and the accuracy of the derivatives is thus not fundamentally linked to the
sample distancing as with numerical differentiation. 2) By including the regression term within the
loss function, we regularise the solution of the neural network 4, with the learned solution of the
PDE. The result of fitting a spline is solely based on the data, whereas with DeepMoD it is also
influenced by the constrained of the underlying equation (i.e. £ and g). We show in the next section
that these two differences allow model discovery in extremely sparse and noisy data sets, whereas
classical methods fail.

' github.com/PhIMaL./DeePyMoD
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4 RESULTS

4.1 SYNTHETIC DATA - BURGERS EQUATION

We consider a synthetic data set of the Burgers equation u; = vu,, — uu,, with a delta peak initial
condition u(x,t = 0) = Ad(x) and domain ¢ € [0.1,1.1],x € [—3,4]. This problem can be
solved analytically (see Appendix A) to yield a solution dependent on a dimensionless coordinate
z = x/v/4vt. We recognize the denominator as a time-dependent length scale: a Burgers data set
sampled with spacing Az thus has a time-dependent dimensionless spacing Az(t). We are interested
in the smallest characteristic length scale, which for this data set is [, = +/4vty, where tg = 0.1 is
the initial time of the data set. We set A = 1 and v = 0.25, giving I, = v/0.1 ~ 0.3.

Splines do not scale effectively beyond a single dimension, making it hard to fairly compare across
both the spatial and temporal dimensions. We thus study the effect of spacing only along the spatial
axis and minimize the effect of discretization along the temporal axis by densely sampling 100
frames, i.e. At = O.A()l. Along the spatial axis we vary the number of samples between 4 and 40,

equivalent to 0.5 < $% < 5. We study the relative error € as the sum of the relative errors for all the

derivatives, normalized over every frame,

= [ 195w, — 03],
- Wog — Za7illa 4
6 Z< Ol /. @

where 7 sums the derivatives and j runs over the frames. The derivatives are normalised every frame
by the I norm of the ground truth to ensure € is independent of the magnitude of u. € does not
take into account the nature of noise (e.g. if it is correlated and non-gaussian), nor if the correct
equation is discovered. However, taken together with a success metric (i.e if the right equation was
discovered), it does serve as a useful proxy to the quality of the interpolation.

Figure ) shows € as a function of the relative spacing Ax/l. and whether the correct equation
was discovered. The error when using splines (yellow) increases with Az and, as expected, we
are unable to discover the correct equation for Az > 0.8l (dots indicate the correct equation is
discovered and triangles indicates it failed to do so). Considering the NN-based DeepMoD method,
sampled on a grid (green), we observe that it is able to accurately interpolate and discover the correct
equation up to Az == 1.2l.. The reason for this is that NN-based interpolation constructs a surrogate
of the data, informed by both the spatial and the temporal dynamics of the data set, while classical
interpolation is intrinsically limited to a single time frame.

In figure[1f) we consider the same graph with 20% white noise on the data. Despite smoothing, the
spline is unable to construct an accurate library and fails to discover the correct equation in every
case. DeepMoD stands in stark contrast, discovering the correct equation with comparable relative
error as in the 0% noise case.

Off-grid sampling Whereas higher-order splines are constrained to interpolating along a single
dimension, DeepMoD uses a neural network to interpolate along both the spatial and temporal axis.
This releases us from the constraint of on-grid sampling, and we exploit this by constructing an
alternative sampling method. We observe that for a given number of samples n, DeepMoD is able to
interpolate much more accurately if these samples are randomly drawn from the sampling domain.
We show in figure [Ib and ¢ (Red) that the relative error € in the sparse regime, can be as much
as two orders of magnitude lower compared to the grid-sampled results at the same number of
samples. We hypothesize that this is due to the spatio-temporal interpolation of the network. By
interpolating along both axes, each sample effectively covers its surrounding area, and by randomly
sampling we cover more of the spatial sampling domain. Contrarily, sampling on a grid leaves large
areas uncovered; we are effectively sampling at a much lower resolution than when using random
sampling.

To test whether or not this improvement is intrinsically linked to the randomness of sampling, we
also construct an alternative sampling method called shifted-grid sampling. Given a sampling grid
with sensor distance Az, shifted-grid sampling translates this grid a distance Aa every frame, lead-
ing to an effective sample distance of Aa < Ax. This strategy, similarly as random sampling varies
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Shifted sampling Grid sampling

Random sampling

Figure 1: a) The three sampling strategies considered. b) and c) Error in the function library (Eq.

as function of the distance between the senors Ax, normalized with [. = \/4vtg, for b) noise-
less data and ¢) 20% of additive noise. The yellow symbols correspond to a spline interpolation
and the green, blue and red correspond to the NN-based model discovery with various sampling
strategies. The circles indicate that model discovery was successful while the triangles indicate that
the incorrect model was discovered. The horizontal dashed line indicates the smallest characteristic
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Figure 2: a) Experimental setup of the gel electrophoresis. b) Three time frames of the density
with a spatial resolution of 20x25. ¢) and d) Success diagram for the experimental data indicating
correct model discovery (Yellow indicates the correct AD equation u; = D(uz, + uyy) + vuy is
discovered) as function of the spatial and temporal resolution for ¢) grid sampling and d) random
sampling. e) Obtained mask and coefficients (D = 0.025 and and v = (0, 0.2)) for the artificial
data-set as function of the noise level (11x11 spatial resolution). Hereby, yellow indicates the terms
selected by the algorithm and the red dashed box the terms that are expected in the PDE. f) Success
diagrams for various levels of additive noise, comparing the result of DeepMoD with a grid and
random sampling strategy and the classical LassoCV algorithm on a Finite Difference (FD)-based
library (after SVD filtering of the different frames).

the sensor position over time, but does so in a deterministic and grid-based way. We show this
sampling strategy in figure [Th, while panels b and ¢ confirm our hypothesis; shifted grid sampling
(Blue) performs similarly to random sampling. Shifted-grid sampling relies on a densely sampled
temporal axis '’compensating’ for the sparsely sampled spatial axes. This makes off-grid sampling
beneficial when either the time or space axis, but not both, can be sampled with a high resolution.
In the experimental section we show that if both axes are sparsely sampled, we do not see a strong
improvement over grid sampling.

4.2 EXPERIMENTAL DATA - 2D ADVECTION-DIFFUSION

In an electrophoresis experiment, a charged dye is pipetted in a gel over which a spatially uniform
electric field is applied (see Figure 2h)). The dye passively diffuses in the gel and is advected by the
applied electric field, giving rise to an advection-diffusion equation with advection in one direction:
Ut = D(Ugz + Uyy) + vuy. Both et al| (2021) showed that DeepMoD could discover the correct
underlying equation from the full data-set (size 120 x 150 pixels and 25 frames). Here, we study
how much we can sub-sample this data and still discover the advection-diffusion equation.

In figure [2] ¢) and d) we perform grid based as well as a random sub-sampling of the data. The
neural network-based method discovers the advection-diffusion equation on as few as 6 x 8 spatial
sampling points with 13 time-points, or with 20 x 25 pixels on only 3 time-points. The minimum
number of required samples is similar for grid and random sampling, confirming that when both
axes are poorly sampled, there is no benefit to sample randomly.

The smallest characteristic length scale in the problem is the width of the dye at ¢ = ¢y, which we
estimate as [ & 10 pixels. For the data presented in figure[2k) and2[d), at a resolution below 10 x 13
sensors classical approaches would inherently fail, even if no noise was present in the data set. This
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is indeed what we observe: using a finite difference-based library we were unable to recover the
advection-diffusion equation, even after denoising with SVD (See Appendix A for details).

The use of a neural network and random sampling lead to non-deterministic behaviour: the neural
network training dynamics depend on its initialization and two randomly sampled datasets of similar
size might not lead to similar results. In practice this leads to a ’soft’ decision boundary, where a
fraction of a set of runs with different initialization and datasets fail. We discuss and study this issue
in appendix B.

Noiseless synthetic data set To further confirm our results from the previous section, we sim-
ulate the experiment by solving the 2D advection-diffusion with a Gaussian initial condition and
experimentally determined parameters (D = 0.025 and and v = (0,0.2). Figure ) shows the
selected terms and their magnitude as functions of the applied noise levels for a highly subsampled
data-set (grid sampling, spatial resolution of 11x11 and temporal resolution 14). The correct AD
equation is recovered up to noise levels of 100% (See figure ), confirming the noise robustness of
the NN-based model discovery. In panel f) we compare the deep-learning based model discovery
using grid and random sampling with classical methods for various noise levels and sensor spacing
with a fixed temporal resolution of 81 frames (Data for the FD was pre-processed with a SVD filter,
see SI for further details). We confirm that, similarly to the Burgers example of the previous section,
the correct underlying PDE is discovered even below the smallest characteristic length-scale in the
problem (indicated by a red dashed line in figure [2f).

This figure confirms our three main conclusions: 1) In the noiseless limit, classical approaches are
only slightly less performing than NN-based model discovery for grid sampling. 2) Increasing the
noise level dramatically impacts classical model discovery while barely impacting NN-based model
discovery and 3) random sampling over space considerably improves performance, allowing model
discovery with roughly 4-8 times fewer sample points for this particular data-set (depending on the
noise level).

4.3 EXPERIMENTAL DATA - CABLE EQUATION

Applying a constant voltage to a RC-circuit with longitudinal resistance (see figure [3] a) result
in time-dependent voltage increase throughout the circuit due to the charging of the capacitors.
This rise is modeled by the cable equation, which is essentially a reaction-diffusion equation
Uy = Uge/(R)C) + u/(Ry,C) with C the capacitance, R; the longitudinal resistance and R,
the parallel resistance of the circuit. The discrete nature of the experiment automatically gives
Az = O(l.). We consider an extreme case where we only have seven sensors throughout the circuit
(i.e. spatial axis), but take 2500 samples along the time axis. Figure[3p shows the measured voltage
at these seven elements. Initially, all the capacitors are uncharged and we observe a sharp voltage
increase at the first element. As the capacitors charge, this further propagates through the circuit,
charging the capacitors and resulting in the curves shown in the figure. We apply both a classical
approach with the library generated with splines and DeepMoD to a varying amount of elements.
Figure[3|c and d show that the DeepMoD discovers the cable equation with as few as seven elements,
whereas classical methods are unable to find the cable equation at any number of elements.

5 DISCUSSION AND FUTURE WORK

In this paper we showed how a deep learning approach allows to discover partial differential equa-
tions from coarsely and off-grid sampled observations in time and space. The correct equations are
discovered, even when the sensor spacing is larger than some data set’s characteristic length scale-
an inaccessible regime when using numerical differentiation procedures. We have also shown that
the presence of noise quickly deteriorates the performance of classical methods, whereas the neural
network based method is much less affected. However, in the limit of very sparse data, model dis-
covery can be sensitive to the exact positioning of the sensors, hence sensitive to where exactly on
the grid the samples are drawn. Future work could investigate the upper limit of the characteristic
length scale above which the approach consistently starts failing and how it relates to the spectrum
of the data. We will also focus in the future on including more structure in the interpolation for
better convergence and initialization robustness, for example using Gaussian Processes.
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A REPRODUCIBILITY

A.1 HYPERPARAMETERS

DeepMoD: In this paper we use the neural network based model discovery tool DeepMoDﬂ Every
experiment uses a neural network with tanh-activation functions and 4 layers of 30 neurons with
random initialization, and an Adam optimizer with default learning rate 10~ and 3 = (0.9,0.9).
The sparsity scheduler has a patience of 500 epochs and a periodicity of 50 epochs [Both & Kusters
(2020).We use a cross validated, thresholded Lasso sparsity selection with a threshold of 0.2 and
otherwise default parameters from the Sklearn implementation Pedregosa et al.|(2011)

Spline interpolation: For fitting the spline interpolation in both the Burgers as well as the Cable
equation, we use a smoothing parameter of s = (.01 in the case of noisy data and 5th order splines.

Finite difference and SVD filter: To construct the function library of the 2D Advection diffusion
equation we use a second-order accurate central difference scheme. For the 2D advection-diffusion
data, the data was denoised using by decomposing it using the SVD and (Harris et al.| (2020))
selecting the 3 largest modes from the signal.

Noise on synthetic data: We add white noise to the data with a strength relative to the standard
deviation of the data, i.e. 50% noise corresponds to 0.5 - o.

A.2 DATA PREPARATION

Burgers equation: Using the Cole-Hopf transform, the Burgers equation described in the main
text reduces to the heat equation and can be solved exactly for a delta peak initial condition to give,

e
o) =\ <1 n “R;”erfc@) | )

where R = A/2v and z = x/+/4vt, a dimensionless coordinate. The characteristic length-scale is
thus the smallest on in the system; for our case study I. = v/4vt|;—,. We use a function library

2github.com/PhIMaL/DeePyMoD
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containing all combinations of up to third order spatial derivative and second order polynomials in
u, for a total of 12 terms, i.e.,

2 2 2 2
O = [1auxau:z::caumwz7uauuw7uuz$7uua:xxau y U Ug, U Ugy, U umzw} . (6)

Cable equation: We measured the passive voltage drop across a RC-circuit coupled to a longi-
tudinal resistance (See Fig. [B]A). This voltage drop across the circuit typically serves to model the
passive voltage transmission through a dendrite, and is described by the so-called cable equation,

1 1
——Ugy — ——U.
RC™ R,C
Here C' is the capacitance. R; the longitudinal resistance and R,, the membrane resistance. This
equation can be discretizised by an electric circuit, consisting of a serial set of n longitudinal re-

sistors, 7;, membrane resistors, r,,, and capacitors, ¢,,. Using Ohm’s ans Kirchhoff’s law, the
discretized versioan of an array of these elements read,

)

Uy =

du; i—1 + 2u; i i
u,:(u,1+u+u+1)_ U . ®)

dt CnTl CmTm

We use a breadboard using structures imitating GMMs, using only standard electronics hardware
(rm = 10kQ, r. = 27092 and ¢,,, = 680mF’). We applied a voltage profile across the electronics
structure using an arbitrary wave generator (AWG) (mhinstek MHS-2300A) and used a dual channel
oscilloscope (Voltcraft DSO-1062D) to measure the voltage at various positions along the circuitry.
These positions along the circuitry are the the spatial dimension of the cable equation. We varied the
amount of elements between 5 and 13, mimicking various spatial discretizations. At every sensor,
we collected 2500 data-points. We trained the model discovery algorithm on a function library up
to first order polynomials and second order derivatives.

A.3 2D ADVECTION DIFFUSION

Experiment: We consider the 2D advection-diffusion process described by,

uy = —V - (=DVu + tu) . 9)

Here ' is the velocity vector describing the advection and D is the diffusion coefficient. We measure
a time-series of images from an electrophoresis experiment, tracking the advection-diffusion of a
charged purple loading dye under the influence of a spatially uniform electric field. We capture a
set of 25 images with a resolution of 120x150 pixels and show the resultant 2D density field for
three separate time-frames (in arbitrary units) in Fig. [Za, by subtracting the reference image (no
dye present). The dye displays a diffusive and advective motion with constant velocity ¢, which
is related to the strength of the applied electric field. We use this data-set to asses the impact of
temporal as well as spatial sensor density on the model discovery task. We used a cross validated
thresholded Lasso sparsity selection with a threshold of 0.05 and a function library containing all
combinations of up to third order spatial derivative and second order polynomials in u, for a total of
10 terms,

0= [17 Uz, Uy, Ugy, Uyy, Uzy, Ugzz, Uyyy, Uzzy; Uwyy} . (10)

B SENSITIVITY TO THE RANDOM SAMPLING

In this Appendix we discuss the sensitivity of the deep learning based approach, DeepMoD, w.r.t.
the set of random samples selected, in particular is the limit Az /. > 1. In order to show the impact
of the random set of samples drawn we perform 10 runs of DeepMoD with otherwise identical pa-
rameters (1000 samples drawn and 10% white noise and otherwise identical parameters as discussed
in Appendix A). In Fig. |4p we show the outcome for Az/l. = 2 > 1 indicated that in 7 of the 10
cases the correct equation is discovered and in 3 of the 10 cases this is not the case. In Fig. fp) we
repeat this as function of Ax /I, and show that the larger the average distance between the samples
becomes, the more pronounced the discrepancy between discovered models becomes. We have also
tested the impact of the initialization of the neural network on the outcome, with identical set of
samples and parameters, but this had little impact to the obtained PDE.
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Figure 4: a) Coefficients obtained for the Burgers equation with 10% white noise for 10 separate runs
with 10 sets of randomly sampled data-sets. b) Fraction of correctly discovered equations over 10
runs (with 10% white noise and 1000 samples per run) as function of the average distance between
the samples, Az, relative the the smallest characteristic length-scale /...
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